中文版 | English
题名

临床铜绿假单胞菌TBCF10839抗吞噬机制研究

姓名
姓名拼音
PAN Yanrong
学号
11930140
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
杨亮
导师单位
南方科技大学医学院
论文答辩日期
2022-05-09
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

   铜绿假单胞菌是广泛分布在环境中的条件致病菌,并非典型的胞内生存菌,而铜绿假单胞菌慢性感染分离株TBCF10839却具有在吞噬细胞内复制的能力,其在细胞内逃逸吞噬效应的相关机制目前尚不明确。本项目旨在比较性地分析铜绿假单胞菌模式菌株PAO1TBCF10839在吞噬细胞内的生长特征及其对吞噬细胞功能的影响,探究铜绿假单胞菌在吞噬细胞内的生存机制,为治疗铜绿假单胞菌的慢性感染提供理论依据。本研究中,我们发现部分铜绿假单胞菌PAO1在巨噬细胞内呈现生长状态。蛋白质组学分析结果显示,PAO1进入巨噬细胞后,与亚精胺代谢途径相关蛋白表达量显著提高。因此我们构建了亚精胺代谢途径缺失突变株,发现阻断亚精胺分解代谢途径可降低巨噬细胞内PAO1的细菌数量及PAO1对巨噬细胞产生的毒性。由于铜绿假单胞菌型分泌系统可被亚精胺摄取途径激活并在感染中发挥重要作用,我们进一步比对了PAO1TBCF10839的转录组,以及被上述两菌株感染后的巨噬细胞转录组。结果显示,TBCF10839型分泌系统相关基因的表达水平显著低于PAO1。相较于经PAO1感染的巨噬细胞,经TBCF10839感染的巨噬细胞下调了大量参与免疫激活相关的基因。此外,体外感染实验结果显示,TBCF10839在巨噬细胞内的细菌数量显著低于PAO1以及型分泌系统过表达突变株TBCF10839 ΔexsDTBCF10839在巨噬细胞内逃逸吞噬小体的能力弱于PAO1以及TBCF10839 ΔexsD。因此,本研究结果证实了铜绿假单胞菌在进入吞噬细胞后能通过激活亚精胺分解代谢途径来增强保内生存能力,亚精胺代谢途径可能通过激活型分泌系统来增强铜绿假单胞菌逃逸吞噬小体,本研究结果也暗示慢性感染中分离的铜绿假单胞菌临床菌株TBCF10839可能通过下调型分泌系统相关基因的表达来降低宿主免疫细胞的激活从而逃逸吞噬。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1] CENDRA M D M, TORRENTS E. Differential adaptability between reference strains and clinical isolates of Pseudomonas aeruginosa into the lung epithelium intracellular lifestyle[J]. Virulence, 2020, 11(1):862-876.
[2] MALHOTRA S, HAYES D, WOZNIAK D J. Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface[J]. Clinical Microbiology Reviews, 2019, 32(3):e00138-18.
[3] KLOCKGETHER J, MIETHKE N, KUBESCH P, et al. Intraclonal diversity of the Pseudomonas aeruginosa cystic fibrosis airway isolates TBCF10839 and TBCF121838: distinct signatures of transcriptome, proteome, metabolome, adherence and pathogenicity despite an almost identical genome sequence[J]. Environmental Microbiology, 2013, 15(1):191-210.
[4] BOHN Y S T, BRANDES G, RAKHIMOVA E, et al. Multiple roles of Pseudomonas aeruginosa TBCF10839 PilY1 in motility, transport and infection[J]. Molecular Microbiology, 2009, 71(3):730-747.
[5] DONG T, SCHELLHORN H E. Role of RpoS in virulence of pathogens[J]. Infection and Immunity, 2010, 78(3):887-897.
[6] MURRAY P J. Macrophage polarization[J]. Annual Review of Physiology, 2017, 79:541-566.
[7] ORECCHIONI M, GHOSHEH Y, PRAMOD A B, et al. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages[J]. Frontiers in Immunology, 2019, 10:1084.
[8] ATRI C, GUERFALI F Z, LAOUINI D. Role of human macrophage polarization in inflammation during infectious diseases[J]. International Journal of Molecular Sciences, 2018, 19(6):1801.
[9] SALIBA A E, LI L, WESTERMANN A J, et al. Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella[J]. Nature Microbiology, 2016, 2:16206.
[10] BROZ P, MONACK D M. Newly described pattern recognition receptors team up against intracellular pathogens[J]. Nature Reviews Immunology, 2013, 13(8):551-565.
[11] MITCHELL G, CHEN C, PORTNOY D A. Strategies used by bacteria to grow in macrophages[J]. Microbiology Spectrum, 2016, 4(3):10.
[12] URIBE-QUEROL E, ROSALES C. Control of phagocytosis by microbial pathogens[J]. Frontiers in Immunology, 2017, 8:1368.
[13] CHRISTOFORIDIS S, MCBRIDE H M, BURGOYNE R D, et al. The Rab5 effector EEA1 is a core component of endosome docking[J]. Nature, 1999, 397(6720):621-625.
[14] PAUWELS A, TROST M, BEYAERT R, et al. Patterns, receptors, and signals: regulation of phagosome maturation[J]. Trends in Immunology, 2017, 38(6):407-422.
[15] THANABALASURIAR A, SUREWAARD B G, WILLSON M E, et al. Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vasculature[J]. Journal of Clinical Investigation, 2017, 127(6):2249-2261.
[16] DENG W, MARSHALL N C, ROWLAND J L, et al. Assembly, structure, function and regulation of type Ⅲ secretion systems[J]. Nature Reviews Microbiology, 2017, 15(6):323-337.
[17] GALLE M, CARPENTIER I, BEYAERT R. Structure and function of the type Ⅲ secretion system of Pseudomonas aeruginosa[J]. Current Protein & Peptide Science, 2012, 13(8):831-842.
[18] BUTTNER D. Protein export according to schedule: architecture, assembly, and regulation of type Ⅲ secretion systems from plant- and animal-pathogenic bacteria[J]. Microbiology and Molecular Biology Reviews, 2012, 76(2):262-310.
[19] MIYATA S, CASEY M, FRANK D W, et al. Use of the Galleria mellonella caterpillar as a model host to study the role of the type Ⅲ secretion system in Pseudomonas aeruginosa pathogenesis[J]. Infection and Immunity, 2003, 71(5):2404-2413.
[20] HEIJDEN J V D, FINLAY B B. Type Ⅲ effector-mediated processes in Salmonella infection[J]. Future Microbiology, 2012, 7(6):685-703.
[21] BEECKMAN D S A, VANROMPAY D C G. Bacterial secretion systems with an emphasis on the chlamydial Type Ⅲ secretion system[J]. Current Issues in Molecular Biology, 2010, 12(1):17-41.
[22] RAYMOND B, YOUNG J C, PALLETT M, et al. Subversion of trafficking, apoptosis, and innate immunity by type Ⅲ secretion system effectors[J]. Trends in Microbiology, 2013, 21(8):430-441.
[23] FRANK D W. The exoenzyme S regulon of Pseudomonas aeruginosa[J]. Molecular Microbiology, 1997, 26(4):621-629.
[24] SHRESTHA M, BERNHARDS R C, FU Y, et al. Backbone interactions between transcriptional activator ExsA and anti-activator ExsD facilitate regulation of the Type Ⅲ secretion system in Pseudomonas aeruginosa[J]. Scientific Reports, 2020, 10(1):9881.
[25] RIETSCH A, VALLET-GELY I, DOVE S L, et al. ExsE, a secreted regulator of type Ⅲ secretion genes in Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences, 2005, 102(22):8006-8011.
[26] LOMBARDI C, TOLCHARD J, BOUILLOT S, et al. Structural and functional characterization of the type three secretion system (T3SS) needle of Pseudomonas aeruginosa[J]. Frontiers In Microbiology, 2019, 10:573.
[27] KIM S H, WANG Y, KHOMUTOV M, et al. The essential role of spermidine in growth of Agrobacterium tumefaciens is determined by the 1,3-diaminopropane moiety[J]. ACS Chemical Biology, 2016, 11(2):491-499.
[28] YANAGISAWA T, SUMIDA T, ISHII R, et al. A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P[J]. Nature Structural & Molecular Biology, 2010, 17(9):1136-1143.
[29] IGARASHI K, KASHIWAGI K. Modulation of cellular function by polyamines[J]. International Journal of Biochemistry & Cell Biology, 2010, 42(1):39-51.
[30] IGARASHI K, KASHIWAGI K. Polyamine modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines[J]. Journal of Biochemistry, 2006, 139(1):11-16.
[31] ZHOU L, WANG J, ZHANG L. Modulation of bacterial Type Ⅲ secretion system by a spermidine transporter dependent signaling pathway[J]. PLOS ONE, 2007, 2(12):e1291.
[32] MAUNDERS E A, TRINIMAN R C, WESTERN J, et al. Global reprogramming of virulence and antibiotic resistance in Pseudomonas aeruginosa by a single nucleotide polymorphism in elongation factor, fusA1[J]. Journal of Biological Chemistry, 2020, 295(48):16411-16426.
[33] LARANCE M, LAMOND A I. Multidimensional proteomics for cell biology[J]. Nature Reviews Molecular Cell Biology, 2015, 16(5):269-280.
[34] LAM H, DEUTSCH E W, EDDES J S, et al. Development and validation of a spectral library searching method for peptide identification from MS/MS[J]. Proteomics, 2007, 7(5):655-667.
[35] HAN J, YI S, ZHAO X, et al. Improved SILAC method for double labeling of bacterial proteome[J]. Journal of Proteomics, 2019, 194:89-98.
[36] MUNDAY D C, SURTEES R, EMMOTT E, et al. Using SILAC and quantitative proteomics to investigate the interactions between viral and host proteomes[J]. Proteomics, 2012, 12(4-5):666-672.
[37] WANG X, HE Y, YE Y, et al. SILAC-based quantitative MS approach for real-time recording protein-mediated cell-cell interactions[J]. Scientific Reports, 2018, 8(1):8441.
[38] STIESS M, WEGEHINGEL S, NGUYEN C, et al. A dual SILAC proteomic labeling strategy for quantifying constitutive and cell-cell induced protein secretion[J]. Journal of Proteome Research, 2015, 14(8):3229-3238.
[39] SHAW E I, VOTH D E. Coxiella burnetii: a pathogenic intracellular acidophile[J]. Microbiology (Reading, England), 2019, 165(1):1–3.
[40] CONNOR M G, PULSIFER A R, PRICE C T, et al. Yersinia pestis requires host Rab1b for survival in macrophages[J]. PLOS Pathogens, 2015, 11(10):e1005241.
[41] KROKEN A R, KUMAR N G, YAHR T, et al. Exotoxin S secreted by internalized Pseudomonas aeruginosa delays lytic host cell death[J]. PLOS Pathogens, 2022, 18(2):e1010306.
[42] PREETI G, BERRY L, MOUSSOUNI M, et al. Killing from the inside: intracellular role of T3SS in the fate of Pseudomonas aeruginosa within macrophages revealed by mgtC and oprF mutants[J]. PLOS Pathogens, 2019, 15(6):e1007812.
[43] AVITAL G, AVRAHAM R, FAN A, et al. scDual-Seq: mapping the gene regulatory program of Salmonella infection by host and pathogen single-cell RNA-sequencing[J]. Genome Biology, 2017, 18(1):200-208.
[44] XIA A, HAN J, JIN Z, et al. Dual-color fluorescent timer enables detection of growth-arrested pathogenic bacterium[J]. ACS Infectious Diseases, 2018, 4(12):1666-1670.
[45] WESTERMANN A J, FORSTNER K U, AMMAN F, et al. Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions[J]. Nature, 2016, 529(7587):496-501.
[46] WESTERMANN A J, VOGEL S A G J. Dual RNA-seq of pathogen and host[J]. Nature Reviews Microbiology, 2012, 10(9):618-630.
[47] PAN X, FAN Z, CHEN L, et al. PvrA is a novel regulator that contributes to Pseudomonas aeruginosa pathogenesis by controlling bacterial utilization of long chain fatty acids[J]. Nucleic Acids Research, 2020, 48(11):5967-5985.
[48] SULTAN M, ARYA R, KIM K K. Roles of two-component systems in Pseudomonas aeruginosa virulence[J]. International Journal of Molecular Sciences, 2021, 22(22):12152.
[49] ESPINEL I C, GUERRA P R, JELSBAK L. Multiple roles of putrescine and spermidine in stress resistance and virulence of Salmonella enterica serovar Typhimurium[J]. Microbial Pathogenesis, 2016, 95(2016):117-123.
[50] FELGNER S, PREUSSE M, BEUTLING U, et al. Host-induced spermidine production in motile Pseudomonas aeruginosa triggers phagocytic uptake[J]. Elife, 2020, 9:e55744.
[51] DAMRON F H, OGLESBY-SHERROUSE A G, WILKS A, et al. Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia[J]. Scientific Reports, 2016, 6:39172.
[52] DASU V V, NAKADA Y, OHNISHI-KAMEYAMA M, et al. Characterization and a role of Pseudomonas aeruginosa spermidine dehydrogenase in polyamine catabolism[J]. Microbiology (Reading, England) , 2006, 152(8):2265-2272.
[53] VOURC'H M, ROQUILLY A, BROQUET A, et al. Exoenzyme T plays a pivotal role in the IFN-γ production after Pseudomonas challenge in IL-12 primed natural killer cells[J]. Frontiers in Immunology, 2017, 8:1283.
[54] LI H, LUO Y, WILLIAMS B, et al. Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies[J]. International Journal of Medical Microbiology, 2012, 302(2):63-68.
[55] ZENG Z, LAN T, WEI Y, et al. CCL5/CCR5 axis in human diseases and related treatments[J]. Genes & Diseases, 2022, 9(1):12-27.
[56] AHMADI Z, ARABABADI M K, HASSANSHAHI G. CXCL10 activities, biological structure, and source along with its significant role played in pathophysiology of type I diabetes mellitus[J]. Inflammation, 2013, 36(2):364-371.
[57] HULTGREN O, EUGSTER H P, SEDGWICK J D, et al. TNF/lymphotoxin-alpha double-mutant mice resist septic arthritis but display increased mortality in response to Staphylococcus aureus[J]. Journal of Immunology, 1998, 161(11):5937-5942.
[58] KWAKKEL J, BEEREN H C V, ACKERMANS M T, et al. Skeletal muscle deiodinase type 2 regulation during illness in mice[J]. Journal of Endocrinology, 2009, 203(2):263-270.

所在学位评定分委会
医学院
国内图书分类号
Q93
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335923
专题南方科技大学医学院
推荐引用方式
GB/T 7714
潘彦蓉. 临床铜绿假单胞菌TBCF10839抗吞噬机制研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930140-潘彦蓉-南方科技大学医(5145KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[潘彦蓉]的文章
百度学术
百度学术中相似的文章
[潘彦蓉]的文章
必应学术
必应学术中相似的文章
[潘彦蓉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。