[1] YIN J, HINCHET R, SHEA H, et al. Wearable Soft Technologies for Haptic Sensing and Feedback[J]. Advanced Functional Materials, 2020: 2007428.
[2] CHUNG H U, RWEI A Y, HOURLIER-FARGETTE A, et al. Skin-interfaced Biosensors for Advanced Wireless Physiological Monitoring in Neonatal and Pediatric Intensive-care Units[J]. Nature Medicine, 2020, 26(3): 418-429.
[3] CAPOBIANCO E, DOMINIETTO M. From Medical Imaging to Radiomics: Role of Data Science for Advancing Precision Health[J]. Journal of Personalized Medicine, 2020, 10(1): 15.
[4] 陈积义.腹内高压及腹腔间隙综合症的研究进展[J].大医生,2017,2(08):103-115.
[5] 史玉泉.颅内压增高[J].新医学,1975,1(2):118-124.
[6] 王立江,元小冬.有创颅内压监测技术在重型颅脑损伤患者中的应用价值[J].解放军医药杂志,2017,29(08):55-59.
[7] 张斌,栗洁,贾丛林.高血压脑出血外科治疗中颅内压监测及临床意义[J].浙江创伤外科,2012,17(03):376-377.
[8] 齐洪武,曾维俊,任胤朋,等.有创颅内压监测技术的研究进展[J].中国微侵袭神经外科杂志,2020,25(06):281-284.
[9] 武蒙蒙,胡红建,梅其勇.无创颅内压监测技术研究进展[J].第二军医大学学报,2021,42(08):897-902.
[10] PHAN H P. Implanted Flexible Electronics: Set Device Lifetime with Smart Nanomaterials[J]. Micromachines, 2021, 12: 157.
[11] KANG S K, MURPHY R, HWANG S W, et al. Bioresorbable Silicon Electronic Sensors for the Brain[J]. Nature, 2016, 530: 71-76.
[12] LU D, YAN Y, DENG Y, et al. Bioresorbable Wireless Sensors as Temporary Implants for In Vivo Measurements of Pressure[J]. Advanced Functional Materials, 2020, 30: 2003754.
[13] LU D, YAN Y, AVILA R, et al. Bioresorbable Wireless Passive Sensors as Temporary Implants for Monitoring Regional Body Temperature[J]. Advanced Healthcare Materials, 2020, 9: 2000942.
[14] YUK H, LU B, ZHAO X. Hydrogel Bioelectronics[J]. Chemical Society Reviews, 2019, 48: 1642-1667.
[15] SHIN J, YAN Y, BAI W, et al. Bioresorbable Pressure Sensors Protected with Thermally Grown Silicon Dioxide for the Monitoring of Chronic Diseases and Healing Processes[J]. Nature Biomedical Engineering, 2019, 3: 37-46.
[16] 江基尧.中国颅脑创伤颅内压监测专家共识[J].中华神经外科杂志,2011,10:1073-1074.
[17] SCHWAB S, SCHELLINGER P, WERNER C, et al. Neurointensive[M].雷霆,译.武汉:湖北科学技术出版社,2014:67-74.
[18] 曹美鸿.颅内压增高的诊治颅内压增高的原因与机理[J].医师进修杂志,1984,11:1-3.
[19] 粟秀初.颅内压增高与脑疝形成及其发病机理[J].医师进修杂志,1984,11:6-8.
[20] 高亮,周良辅,黄峰平,等.脑室内颅内压持续监测和阶梯式治疗重型颅脑外伤[J].中华神经外科杂志,2007,23(07):507-509.
[21] 彭发坤.颅内压监测术后颅内感染危险因素分析[J].浙江创伤外科,2021,26(02):207-209.
[22] CYROUS A, O’NEAL B, FREEMAN W D. New approaches to bedside monitoring in stroke[J]. Expert Review of Neurotherapeutics, 2012, 12(8): 915-928.
[23] CARTER C C. Miniature Passive Pressure Pransensor for Implanting in the Eye[J]. IEEE-Transactions on Biomedical Engineering, 1967, 14(2): 74-83.
[24] HUANG Q, DONG L, WANG L, et al. LC Passive Wireless Sensors Toward a Wireless Sensing Platform: Status, Prospects, and Challenges[J]. Journal of Microelectromechanical Systems, 2016, 25(5): 822-841.
[25] CHEN L, TEE C, BAO Z, et al. Continuous Wireless Pressure Monitoring and Mapping with Ultra-small Passive Sensors for Health Monitoring and Critical Care[J]. Nature Communication, 2014, 5: 5028.
[26] LEE J, IHLE S J, Pellegrino G S, et al. Stretchable and Suturable Fibre Sensors for Wireless Monitoring of Connective Tissue Strain[J]. Nature Electronics, 2021, 4: 291-301.
[27] RUTH S R A, FEIG V R, TRAN H, et al. Microengineering Pressure Sensor Active Layers for Improved Performance[J]. Advanced Functional Materials, 2020, 30: 2003491.
[28] YUN G, TANG S, LU H, et al. Hybrid-Filler Stretchable Conductive Composites: From Fabrication to Application[J]. Small Science, 2021, 1: 2000080.
[29] RUTH S R A, BEKER L, TRAN H, et al. Rational Design of Capacitive Pressure Sensors Based on Pyramidal Microstructures for Specialized Monitoring of Biosignals[J]. Advanced Functional Materials, 2020, 30: 1903100.
[30] RUTH S R A, BAO Z. Designing Tunable Capacitive Pressure Sensors Based on Material Properties and Microstructure Geometry[J]. ACS Applied Materials and Interfaces, 2020, 12(52): 58301-58316.
[31] PENG S, BLANLOEUIL P, WU S, et al. 3D Printing: Rational Design of Ultrasensitive Pressure Sensors by Tailoring Microscopic Features[J]. Advanced Materials Interfaces, 2018, 5: 1800403.
[32] ZHANG J, YE S, LIU H. 3D Printed Piezoelectric BNNTs Nanocomposites with Tunable Interface and Microarchitectures for Self-powered Conformal Sensors[J]. Nano Energy, 2020, 77: 105300.
[33] WAN Y, QIU Z, HONG Y, et al. A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-Aspect-Ratio Microstructures[J]. Advanced Electronic Materials, 2018, 4: 1700586.
[34] PANG Y, ZHANG K, YANG Z, et al. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity[J]. ACS Nano, 2018, 12(3): 2346-2354.
[35] JIA J, HUANG G, DENG J, et al. Skin-inspired Flexible and High-sensitivity Pressure Sensors based on rGO Films with Continuous-gradient Wrinkles[J]. Nanoscale, 2019, 11(10): 4258-4266.
[36] LIANG X, QI Y, ZHEN P, et al. Design and Preparation of Quasi-spherical Salt Particles as Water-Soluble Porogens to Fabricate Hydrophobic Porous Scaffolds for Tissue Engineering and Tissue Regeneration[J]. Materials Chemistry Frontiers, 2018, 2: 1539-1553.
[37] LIANG X, CHEN G, LIN S, et al. Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels[J]. Advanced Materials, 2022, 34: 2107106.
[38] VISSER C W, AMATO D N, MUELLER J, et al. Architected Polymer Foams via Direct Bubble Writing[J]. Advanced Materials, 2019, 31: 1904668.
[39] ZHAO T, LI T, CHEN L, et al. Highly Sensitive Flexible Piezoresistive Pressure Sensor Developed Using Biomimetically Textured Porous Materials[J]. ACS Appl Mater Interfaces, 2019, 11(32): 29466-29473.
[40] MOHAN S S. Simple Accurate Expressions for Planar Spiral Inductances[J]. IEEE Journal of Solid-state Circuits, 1999, 34(10): 1419-1424.
[41] ROSENGREN L, BACKLUND Y, SJOSTROM T, et al. A System for Wireless Intra-ocular Pressure Measurements Using a Silicon Micromachined Sensor[J]. Journal of Micromechanics and Microengineering, 1992, 2(202): 202-204.
[42] BOUTRY C M, BEKER L, KAIZAWA Y, et al. Biodegradable and Flexible Arterial-pulse Sensor for the Wireless Monitoring of Blood Flow[J]. Nature Biomedical Engineering, 2019, 3(1): 47-57.
[43] KALIDASAN V, YANG X, XIONG Z, et al. Wirelessly Operated Bioelectronic Sutures for the Monitoring of Deep Surgical Wounds[J]. Nature Biomedical Engineering, 2021, 5: 1217-1227.
[44] FEINER R. DVIR T. Tissue–electronics Interfaces: From Implantable Devices to Engineered Tissues[J]. Nature Reviews Materials, 2017, 3: 17076.
[45] FAMM K, LITT B, TRACEY K, et al. A Jump-start for Electroceuticals[J]. Nature, 2013, 496: 159-161.
[46] MAX O C. Engineering and Surgical Advancements Enable More Cognitively Integrated Bionic Arms[J]. Science Robotics, 2021, 6(68): 3123.
[47] CHORTOS A, LIU J, BAO Z. Pursuing Prosthetic Electronic Skin[J]. Nature Materials, 2016, 15: 937-950.
[48] YUK H, LU B, ZHAO X. Hydrogel Bioelectronics[J]. Chemical Society Reviews, 2019, 48: 1642-1667.
[49] NATHAN A, AHNOOD A, COLE M, et al. Flexible Electronics: The Next Ubiquitous Platform[J]. Proceedings of the IEEE, 2012, 100(Special Centennial Issue): 1486-1517.
[50] YANG S, SHIM J H, CHO H, et al. Hetero-Integration of Silicon Nanomembranes with 2D Materials for Bioresorbable Wireless Neurochemical System[J]. Advanced Materials, 2022: 2108203.
[51] YIN L, BOZLER C, HARBURG D V, et al. Materials and Fabrication Sequences for Water Soluble Silicon Integrated Circuits at the 90 nm Node[J]. Applied Physics Letters, 2015, 106: 014105.
[52] DAGDEVIREN C, HWANG S W, SU Y, et al. Transient, Biocompatible Electronics and Energy Harvesters Based on ZnO[J]. Small, 2013, 9: 3398-3404.
[53] GAO J, CHEN S, TANG D, et al. Mechanical Properties and Degradability of Electrospun PCL/PLGA Blended Scaffolds as Vascular Grafts[J]. Transactions of Tianjin University, 2019, 25: 152-160.
[54] ASHAMMAKHI N, HERNANDEZ A L, UNLUTURK B D, et al. Biodegradable Implantable Sensors: Materials Design, Fabrication, and Applications[J]. Advanced Functional Materials, 2021, 31: 2104149.
[55] BOUTRY C M, KAIZAWA Y, SCHROEDER B C, et al. A Stretchable and Biodegradable Strain and Pressure Sensor for Orthopaedic Application[J]. Nature Electronics, 2018, 1: 314-321.
[56] WANG L, LU C, YIN L, et al. A Fully Biodegradable and Self-electrified Device for Neuroregenerative Medicine[J]. Science Advances, 2020, 6: eabc6686.
[57] GUO H, D'ANDREA D, ZHAO J, et al. Advanced Materials in Wireless, Implantable Electrical Stimulators that Offer Rapid Rates of Bioresorption for Peripheral Axon Regeneration[J]. Advanced Functional Materials, 2021, 31: 2102724.
[58] KIM H S, YANG S, JANG T M, et al. Bioresorbable Silicon Nanomembranes and Iron Catalyst Nanoparticles for Flexible, Transient Electrochemical Dopamine Monitors[J]. Advanced Healthcare Materials, 2018, 7: 1801071.
[59] KANG S, MURPHY R, HWANG S, et al. Bioresorbable Silicon Electronic Sensors for the Brain[J]. Nature, 2016, 530: 71-76.
[60] GOFFIN J M, PITTET P, CSUCS G, et al. Focal Adhesion Size Controls Tensiondependent Recruitment of α-Smooth Muscle Actin to Stress Fibers[J]. Journal of Cell Biology, 2006, 171: 259-268.
[61] CHOI S, HAN S I, JUNG D, et al. Highly Conductive, Stretchable and Biocompatible Ag–Au Core–sheath Nanowire Composite for Wearable and Implantable Bioelectronics[J]. Nature Nanotechnology, 2018, 13: 1048-1056.
[62] LEE S, FRANKLIN S, HASSANI F, et al. Nanomesh Pressure Sensor for Monitoring Finger Manipulation Without Sensory Interference[J]. Science, 2020, 370(6519): 966-970.
[63] LIU J, ZHANG X, LIU Y, et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution[J]. Proceedings of the National Academy of Sciences, 2020, 117(26): 14769-14778.
[64] COSTERTON J, MONTANARO L, ARCIOLA C. Biofilm in Implant Infections: Its Production and Regulation[J]. International Journal of Artificial Organs, 2005, 28: 1062-1068.
[65] YANG Q, WEI T, YIN R T, et al. Photocurable Bioresorbable Adhesives as Functional Interfaces Between Flexible Bioelectronic Devices and Soft Biological Tissues[J]. Nature Materials, 2021, 20: 1559-1570.
[66] DENG J, YUK H, WU J, et al. Electrical Bioadhesive Interface for Bioelectronics[J]. Nature Materials, 2021, 20: 229-236.
[67] YUK H, WU J, SARRAFIAN T L, et al. Rapid and Coagulation-independent Haemostatic Sealing by a Paste Inspired by Barnacle Glue[J]. Nature Biomedical Engineering, 2021, 5: 1131-1142.
[68] ZHANG K, CHEN X, XUE Y, et al. Tough Hydrogel Bioadhesives for Sutureless Wound Sealing, Hemostasis and Biointerfaces[J]. Advanced Functional Materials, 2021: 2111465.
[69] LIU X, LIU J, LIN S, et al. Hydrogel Machines[J]. Materials Today, 2020, 36: 102-124.
[70] WONG T S, KANG S, TANG S, et al. Bioinspired Self-repairing Slippery Surfaces with Pressure-stable Omniphobicity[J]. Nature, 2011, 477: 443-447.
[71] JACQUELINE L, HARDING, MELISSA M, et al. Combating Medical Device Fouling[J]. Trends in Biotechnology, 2014, 32(3): 140-146.
[72] BANERJEE I, PANGULE R C, KANE R S, et al. Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms[J]. Advanced Materials, 2011, 23: 690-718.
[73] LIU Q, NIAN G, YANG C, et al. Bonding Dissimilar Polymer Networks in Various Manufacturing Processes[J]. Nature Communications, 2018, 9: 846.
[74] YU Y, YUK H, PARADA G A, et al. Hydrogels: Multifunctional “Hydrogel Skins” on Diverse Polymers with Arbitrary Shapes[J]. Advanced Materials, 2019, 31: 1807101.
[75] 黄晶晶,任伊宾,张炳春,等.镁及镁合金的生物相容性研究[J].稀有金属材料与工程,2007,36(06):1102-1105.
修改评论