[1] 邓蕊, 王亚慧, 利辉刑, 等. 一种管道探测蛇形机器人的建模仿真与实验研究[J]. 小型微型计算机系统, 2021, 42(12).
[2] WANG P, LI X, JIANG W H, et al. Research on walking stability of quadruped search-rescue robot[J/OL]. Applied Mechanics and Materials, 2011, 63-64: 831-834.
[3] YOO L S, LEE J H, LEE Y K, et al. Application of a drone magnetometer system to military mine detection in the demilitarized zone[J/OL]. Sensors, 2021, 21(9).
[4] SUN Y, GUAN L, CHANG Z, et al. Design of a low-cost indoor navigation system for food delivery robot based on multi-sensor information fusion[J/OL]. Sensors (Switzerland), 2019, 19(22).
[5] JI W, WANG L. Industrial robotic machining: a review[J/OL]. International Journal of Advanced Manufacturing Technology, 2019, 103(1-4): 1239-1255.
[6] ZOSS A B, KAZEROONI H, CHU A. Biomechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX)[J/OL]. IEEE/ASME Transactions on Mechatronics, 2006, 11(2): 128-138.
[7] BERNHARDT M, FREY M, COLOMBO G, et al. Hybrid Force-Position Control Yields Cooperative Behaviour of the Rehabilitation Robot LOKOMAT[C]//9th International Conference on Rehabilitation Robotics. 2005: 536-539.
[8] BANALA S K, KIM H, AGRAWAL S K, et al. Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX)[J/OL]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2009, 17(1)
[2022-02-18].
[9] SU B Y, WANG J, LIU S Q, et al. A cnn-based method for intent recognition using inertial measurement units and intelligent lower limb prosthesis[J/OL]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(5): 1032-1042.
[10] GOSLINE A H, CAMPION G, HAYWARD V. On The Use of Eddy Current Brakes as Tunable , Fast Turn-On Viscous Dampers For Haptic Rendering[J]. Proceedings of Eurohaptics, 2006, 3: 229-234.
[11] YANG L, ZHANG J, XU Y, et al. Energy performance analysis of a suspended backpack with an optimally controlled variable damper for human load carriage[J/OL]. Mechanism and Machine Theory, 2020, 146.
[12] SCHOLL P, GRABOSCH V, ESLAMY M, et al. Comparison of peak power and energy requirements in different actuation concepts for active knee prosthesis[J/OL]. 2015 IEEE International Conference on Mechatronics and Automation, ICMA 2015, 2015: 1448-1453.
[13] TAGLIAMONTE N L, SERGI F, CARPINO G, et al. Design of a variable impedance differential actuator for wearable robotics applications[C/OL]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010: 2639-2644. DOI:10.1109/IROS.2010.5649982.
[14] WANG D, WANG Y, ZI B, et al. Development of an active and passive finger rehabilitation robot using pneumatic muscle and magnetorheological damper[J/OL]. Mechanism and Machine Theory, 2020, 147: 1-16.
[15] DI NATALI C, CHINI G, TOTARO M, et al. Quasi-passive resistive exosuit for space activities: Proof of concept[J/OL]. Applied Sciences (Switzerland), 2021, 11(8).
[16] 毕彦瑞. 下肢康复训练机器人的设计研究[D]. 2020.
[17] GUO J, ELGENEIDY K, XIANG C, et al. Soft pneumatic grippers embedded with stretchable electroadhesion[J/OL]. Smart Materials and Structures, 2018, 27(5).
[18] GUO J, LENG J, ROSSITER J. Electroadhesion Technologies for Robotics: A Comprehensive Review[J/OL]. IEEE Transactions on Robotics, 2020, 36(2): 313-327.
[19] GRAULE M A, CHIRARATTANANON P, FULLER S B, et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion[J/OL]. Science, 2016, 352(6288): 978-982.
[20] SHINTAKE J, ROSSET S, SCHUBERT B, et al. Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators[J/OL]. Advanced Materials, 2016, 28(2): 231-238.
[21] GRIMMINGER F, MEDURI A, KHADIV M, et al. An Open Torque-Controlled Modular Robot Architecture for Legged Locomotion Research[J/OL]. IEEE Robotics and Automation Letters, 2020, 5(2): 3650-3657.
[22] KWON T B, SONG J B. Force display using a hybrid haptic device composed of motors and brakes[J/OL]. Mechatronics, 2006, 16(5): 249-257.
[23] FAUTEUX P, LAURIA M, HEINTZ B, et al. Dual-differential rheological actuator for high-performance physical robotic interaction[J/OL]. IEEE Transactions on Robotics, 2010, 26(4): 607-618.
[24] ANDRADE R M, FILHO A B, VIMIEIRO C B S, et al. Optimal design and torque control of an active magnetorheological prosthetic knee[J/OL]. Smart Materials and Structures, 2018, 27(10).
[25] WALSH C J, PALUSKA D, PASCH K, et al. Development of a lightweight, underactuated exoskeleton for load-carrying augmentation[C/OL]//Proceedings 2006 IEEE International Conference on Robotics and Automation. 2006: 3485-3491. DOI:10.1109/ROBOT.2006.1642234.
[26] CARPINO G, ACCOTO D, DI PALO M, et al. Design of a rotary passive viscoelastic joint for wearable robots[C/OL]//2011 IEEE International Conference on Rehabilitation Robotics. IEEE, 2011: 1-6. DOI:10.1109/ICORR.2011.5975356.
[27] NIE S, ZHUANG Y, WANG Y, et al. Velocity & displacement-dependent damper: A novel passive shock absorber inspired by the semi-active control[J/OL]. Mechanical Systems and Signal Processing, 2018, 99: 730-746.
[28] 刘国勇, 侯永涛, 刘海平, 等. 星载飞轮双状态隔离用变刚度摩擦阻尼器[J]. 光学精密工程, 2020, 28(7).
[29] MONTELEONE S, NEGRELLO F, CATALANO M G, et al. Damping in Compliant Actuation: A Review[J/OL]. IEEE Robotics and Automation Magazine, 2022.
[30] CATALANO M, GRIOLI G, GARABINI M, et al. A Variable Damping module for Variable Impedance Actuation[C/OL]//2012 IEEE International Conference on Robotics and Automation. 2012: 2666-2672. DOI:10.1109/ICRA.2012.6224938.
[31] ZHI D, FENG Z, XU W, et al. Design and Control of a Variable Viscous Damping Actuator (VVDA) for Compliant Robotic Joints[C/OL]//2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2018: 1876-1881. DOI:10.1109/ROBIO.2018.8665039.
[32] DONG X, LIU W, WANG X, et al. Research on variable stiffness and damping magnetorheological actuator for robot joint[C/OL]//International Conference on Intelligent Robotics and Applications: Vol. 10464. 2017: 109-119. DOI:10.1007/978-3-319-65298-6_11.
[33] ZHANG C, LI X, ZHANG S, et al. Design and experiment evaluation of a magneto-rheological damper for the legged robot[C/OL]//2018 IEEE International Conference on Real-time Computing and Robotics (RCAR). 2018: 687-692. DOI:10.1109/RCAR.2018.8621745.
[34] GARCIA E, AREVALO J C. Combining series elastic actuation and magneto-rheological damping for the control of agile locomotion[J]. Robotics and Autonomous Systems, 2011, 59(10): 827-839.
[35] KHANICHEH A, MINTZOPOULOS D, WEINBERG B, et al. Evaluation of electrorheological fluid dampers for applications at 3-T MRI environment[J/OL]. IEEE/ASME Transactions on Mechatronics, 2008, 13(3): 286-294.
[36] LI J, JIN D, ZHANG X. An Electrorheological Fluid Damper for Robots[C]//Proceedings of 1995 IEEE International Conference on Robotics and Automation. 1995: 2631-2636.
[37] BELL R C, MILLER E D, KARLI J O, et al. Influence of particle shape on the properties of magnetorheological fluids[C/OL]//International Journal of Modern Physics B. 2007: 5018-5025. DOI:10.1142/9789812771209_0109.
[38] FOULC J N. Electrorheological Fluids[J/OL]. Dielectric Materials for Electrical Engineering, 2013: 379-402.
[39] ENOCH A, SUTAS A, NAKAOKA S, et al. BLUE: A bipedal robot with variable stiffness and damping[C/OL]//2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012). 2012: 487-494. DOI:10.1109/HUMANOIDS.2012.6651564.
[40] WU F, HOWARD M. Energy regenerative damping in variable impedance actuators for long-term robotic deployment[J/OL]. IEEE Transactions on Robotics, 2020, 36(6): 1778-1790.
[41] HUANG Z W, HUA X G, CHEN Z Q, et al. Modeling, Testing, and Validation of an Eddy Current Damper for Structural Vibration Control[J/OL]. Journal of Aerospace Engineering, 2018, 31(5): 04018063.
[42] DOWNEY A, CAO L, LAFLAMME S, et al. High capacity variable friction damper based on band brake technology[J/OL]. Engineering Structures, 2016, 113: 287-298.
[43] LAFFRANCHI M, CHEN L, KASHIRI N, et al. Development and control of a series elastic actuator equipped with a semi active friction damper for human friendly robots[J/OL]. Robotics and Autonomous Systems, 2014, 62(12): 1827-1836.
[44] LAFFRANCHI M, TSAGARAKIS N G, CALDWELL D G. CompActTM arm: A compliant manipulator with intrinsic variable physical damping[J/OL]. Robotics: Science and Systems, 2013, 8: 225-232.
[45] KASHIRI N, MEDRANO-CERDA G A, TSAGARAKIS N G, et al. Damping control of variable damping compliant actuators[C/OL]//2015 IEEE International Conference on Robotics and Automation (ICRA). 2015: 850-856. DOI:10.1109/ICRA.2015.7139277.
[46] SARAKOGLOU I, TSAGARAKIS N G, CALDWELL D G. Development of a hybrid actuator with controllable mechanical damping[C/OL]//2014 IEEE International Conference on Robotics and Automation (ICRA). 2014: 1078-1083. DOI:10.1109/ICRA.2014.6906988.
[47] ASANO K, HATAKEYAMA F, YATSUZUKA K. Fundamental study of an electrostatic chuck for silicon wafer handling[J/OL]. IEEE Transactions on Industry Applications, 2002, 38(3): 840-845.
[48] ZHOU X, TIAN P, SHER C W, et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display[J/OL]. Progress in Quantum Electronics, 2020, 71(April): 100263.
[49] HINCHET R, SHEA H. High Force Density Textile Electrostatic Clutch[J/OL]. Advanced Materials Technologies, 2020, 5(4): 1-7.
[50] HINCHET R, VECHEV V, SHEA H, et al. Dextres: Wearable haptic feedback for grasping in VR via a thin form-factor electrostatic brake[C/OL]//Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology. 2018: 901-912. DOI:10.1145/3242587.3242657.
[51] DILLER S, MAJIDI C, COLLINS S H. A lightweight, low-power electroadhesive clutch and spring for exoskeleton actuation[C/OL]//2016 IEEE International Conference on Robotics and Automation (ICRA). 2016: 682-689. DOI:10.1109/ICRA.2016.7487194.
[52] GUO J, BAMBER T, ZHAO Y, et al. Toward Adaptive and Intelligent Electroadhesives for Robotic Material Handling[J/OL]. IEEE Robotics and Automation Letters, 2017, 2(2): 538-545.
[53] CHU B, JUNG K, HAN C S, et al. A survey of climbing robots: Locomotion and adhesion[J/OL]. International Journal of Precision Engineering and Manufacturing, 2010, 11(4): 633-647.
[54] SCHMIDT D, BERNS K. Climbing robots for maintenance and inspections of vertical structures - A survey of design aspects and technologies[J/OL]. Robotics and Autonomous Systems, 2013, 61(12): 1288-1305.
[55] RAMACHANDRAN V, SHINTAKE J, FLOREANO D. All-Fabric Wearable Electroadhesive Clutch[J/OL]. Advanced Materials Technologies, 2019, 4(2): 1-15.
[56] GRIGORII R V., COLGATE J E. Closed Loop Application of Electroadhesion for Increased Precision in Texture Rendering[J/OL]. IEEE Transactions on Haptics, 2020, 13(1): 253-258.
[57] SIRIN O, AYYILDIZ M, PERSSON B, et al. Electroadhesion with application to touchscreens[J]. Soft Matter, 2021, 15(8): 1758-1775.
[58] DILLER S B, COLLINS S H, MAJIDI C. The effects of electroadhesive clutch design parameters on performance characteristics[J/OL]. Journal of Intelligent Material Systems and Structures, 2018, 29(19): 3804-3828.
[59] JIANG H, HAWKES E W, FULLER C, et al. A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity[J/OL]. Science Robotics, 2017, 2(7): 1-12.
[60] CHEN A S, BERGBREITER S. A comparison of critical shear force in low-voltage, all-polymer electroadhesives to a basic friction model[J/OL]. Smart Materials and Structures, 2017, 26(2).
[61] NAKAMURA T, YAMAMOTO A. Modeling and control of electroadhesion force in DC voltage[J/OL]. ROBOMECH Journal, 2017, 4(1).
[62] GRIGORII R V., COLGATE J E. Closed Loop Application of Electroadhesion for Increased Precision in Texture Rendering[J/OL]. IEEE Transactions on Haptics, 2020, 13(1): 253-258.
[63] GUO J, TAILOR M, BAMBER T, et al. Investigation of relationship between interfacial electroadhesive force and surface texture[J/OL]. Journal of Physics D: Applied Physics, 2015, 49(3).
[64] CHEN R, ZHANG Z, SONG R, et al. Time-dependent electroadhesive force degradation[J/OL]. Smart Materials and Structures, 2020, 29(5).
[65] MIN D, LI S, CHO M, et al. Investigation into surface potential decay of polyimide by unipolar charge transport model[J/OL]. IEEE Transactions on Plasma Science, 2013, 41(12): 3349-3358.
[66] CHOI C, MA Y, SEQUEIRA S, et al. Effect of Surface Temperature on Finger Friction and Perception in Electroadhesion[C/OL]//2021 IEEE World Haptics Conference (WHC). IEEE, 2021: 680-684. DOI:10.1109/WHC49131.2021.9517137
[1] 邓蕊, 王亚慧, 利辉刑, 等. 一种管道探测蛇形机器人的建模仿真与实验研究[J]. 小型微型计算机系统, 2021, 42(12).
[2] WANG P, LI X, JIANG W H, et al. Research on walking stability of quadruped search-rescue robot[J/OL]. Applied Mechanics and Materials, 2011, 63-64: 831-834.
[3] YOO L S, LEE J H, LEE Y K, et al. Application of a drone magnetometer system to military mine detection in the demilitarized zone[J/OL]. Sensors, 2021, 21(9).
[4] SUN Y, GUAN L, CHANG Z, et al. Design of a low-cost indoor navigation system for food delivery robot based on multi-sensor information fusion[J/OL]. Sensors (Switzerland), 2019, 19(22).
[5] JI W, WANG L. Industrial robotic machining: a review[J/OL]. International Journal of Advanced Manufacturing Technology, 2019, 103(1-4): 1239-1255.
[6] ZOSS A B, KAZEROONI H, CHU A. Biomechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX)[J/OL]. IEEE/ASME Transactions on Mechatronics, 2006, 11(2): 128-138.
[7] BERNHARDT M, FREY M, COLOMBO G, et al. Hybrid Force-Position Control Yields Cooperative Behaviour of the Rehabilitation Robot LOKOMAT[C]//9th International Conference on Rehabilitation Robotics. 2005: 536-539.
[8] BANALA S K, KIM H, AGRAWAL S K, et al. Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX)[J/OL]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2009, 17(1)
[2022-02-18].
[9] SU B Y, WANG J, LIU S Q, et al. A cnn-based method for intent recognition using inertial measurement units and intelligent lower limb prosthesis[J/OL]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(5): 1032-1042.
[10] GOSLINE A H, CAMPION G, HAYWARD V. On The Use of Eddy Current Brakes as Tunable , Fast Turn-On Viscous Dampers For Haptic Rendering[J]. Proceedings of Eurohaptics, 2006, 3: 229-234.
[11] YANG L, ZHANG J, XU Y, et al. Energy performance analysis of a suspended backpack with an optimally controlled variable damper for human load carriage[J/OL]. Mechanism and Machine Theory, 2020, 146.
[12] SCHOLL P, GRABOSCH V, ESLAMY M, et al. Comparison of peak power and energy requirements in different actuation concepts for active knee prosthesis[J/OL]. 2015 IEEE International Conference on Mechatronics and Automation, ICMA 2015, 2015: 1448-1453.
[13] TAGLIAMONTE N L, SERGI F, CARPINO G, et al. Design of a variable impedance differential actuator for wearable robotics applications[C/OL]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010: 2639-2644. DOI:10.1109/IROS.2010.5649982.
[14] WANG D, WANG Y, ZI B, et al. Development of an active and passive finger rehabilitation robot using pneumatic muscle and magnetorheological damper[J/OL]. Mechanism and Machine Theory, 2020, 147: 1-16.
[15] DI NATALI C, CHINI G, TOTARO M, et al. Quasi-passive resistive exosuit for space activities: Proof of concept[J/OL]. Applied Sciences (Switzerland), 2021, 11(8).
[16] 毕彦瑞. 下肢康复训练机器人的设计研究[D]. 2020.
[17] GUO J, ELGENEIDY K, XIANG C, et al. Soft pneumatic grippers embedded with stretchable electroadhesion[J/OL]. Smart Materials and Structures, 2018, 27(5).
[18] GUO J, LENG J, ROSSITER J. Electroadhesion Technologies for Robotics: A Comprehensive Review[J/OL]. IEEE Transactions on Robotics, 2020, 36(2): 313-327.
[19] GRAULE M A, CHIRARATTANANON P, FULLER S B, et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion[J/OL]. Science, 2016, 352(6288): 978-982.
[20] SHINTAKE J, ROSSET S, SCHUBERT B, et al. Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators[J/OL]. Advanced Materials, 2016, 28(2): 231-238.
[21] GRIMMINGER F, MEDURI A, KHADIV M, et al. An Open Torque-Controlled Modular Robot Architecture for Legged Locomotion Research[J/OL]. IEEE Robotics and Automation Letters, 2020, 5(2): 3650-3657.
[22] KWON T B, SONG J B. Force display using a hybrid haptic device composed of motors and brakes[J/OL]. Mechatronics, 2006, 16(5): 249-257.
[23] FAUTEUX P, LAURIA M, HEINTZ B, et al. Dual-differential rheological actuator for high-performance physical robotic interaction[J/OL]. IEEE Transactions on Robotics, 2010, 26(4): 607-618.
[24] ANDRADE R M, FILHO A B, VIMIEIRO C B S, et al. Optimal design and torque control of an active magnetorheological prosthetic knee[J/OL]. Smart Materials and Structures, 2018, 27(10).
[25] WALSH C J, PALUSKA D, PASCH K, et al. Development of a lightweight, underactuated exoskeleton for load-carrying augmentation[C/OL]//Proceedings 2006 IEEE International Conference on Robotics and Automation. 2006: 3485-3491. DOI:10.1109/ROBOT.2006.1642234.
[26] CARPINO G, ACCOTO D, DI PALO M, et al. Design of a rotary passive viscoelastic joint for wearable robots[C/OL]//2011 IEEE International Conference on Rehabilitation Robotics. IEEE, 2011: 1-6. DOI:10.1109/ICORR.2011.5975356.
[27] NIE S, ZHUANG Y, WANG Y, et al. Velocity & displacement-dependent damper: A novel passive shock absorber inspired by the semi-active control[J/OL]. Mechanical Systems and Signal Processing, 2018, 99: 730-746.
[28] 刘国勇, 侯永涛, 刘海平, 等. 星载飞轮双状态隔离用变刚度摩擦阻尼器[J]. 光学精密工程, 2020, 28(7).
[29] MONTELEONE S, NEGRELLO F, CATALANO M G, et al. Damping in Compliant Actuation: A Review[J/OL]. IEEE Robotics and Automation Magazine, 2022.
[30] CATALANO M, GRIOLI G, GARABINI M, et al. A Variable Damping module for Variable Impedance Actuation[C/OL]//2012 IEEE International Conference on Robotics and Automation. 2012: 2666-2672. DOI:10.1109/ICRA.2012.6224938.
[31] ZHI D, FENG Z, XU W, et al. Design and Control of a Variable Viscous Damping Actuator (VVDA) for Compliant Robotic Joints[C/OL]//2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2018: 1876-1881. DOI:10.1109/ROBIO.2018.8665039.
[32] DONG X, LIU W, WANG X, et al. Research on variable stiffness and damping magnetorheological actuator for robot joint[C/OL]//International Conference on Intelligent Robotics and Applications: Vol. 10464. 2017: 109-119. DOI:10.1007/978-3-319-65298-6_11.
[33] ZHANG C, LI X, ZHANG S, et al. Design and experiment evaluation of a magneto-rheological damper for the legged robot[C/OL]//2018 IEEE International Conference on Real-time Computing and Robotics (RCAR). 2018: 687-692. DOI:10.1109/RCAR.2018.8621745.
[34] GARCIA E, AREVALO J C. Combining series elastic actuation and magneto-rheological damping for the control of agile locomotion[J]. Robotics and Autonomous Systems, 2011, 59(10): 827-839.
[35] KHANICHEH A, MINTZOPOULOS D, WEINBERG B, et al. Evaluation of electrorheological fluid dampers for applications at 3-T MRI environment[J/OL]. IEEE/ASME Transactions on Mechatronics, 2008, 13(3): 286-294.
[36] LI J, JIN D, ZHANG X. An Electrorheological Fluid Damper for Robots[C]//Proceedings of 1995 IEEE International Conference on Robotics and Automation. 1995: 2631-2636.
[37] BELL R C, MILLER E D, KARLI J O, et al. Influence of particle shape on the properties of magnetorheological fluids[C/OL]//International Journal of Modern Physics B. 2007: 5018-5025. DOI:10.1142/9789812771209_0109.
[38] FOULC J N. Electrorheological Fluids[J/OL]. Dielectric Materials for Electrical Engineering, 2013: 379-402.
[39] ENOCH A, SUTAS A, NAKAOKA S, et al. BLUE: A bipedal robot with variable stiffness and damping[C/OL]//2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012). 2012: 487-494. DOI:10.1109/HUMANOIDS.2012.6651564.
[40] WU F, HOWARD M. Energy regenerative damping in variable impedance actuators for long-term robotic deployment[J/OL]. IEEE Transactions on Robotics, 2020, 36(6): 1778-1790.
[41] HUANG Z W, HUA X G, CHEN Z Q, et al. Modeling, Testing, and Validation of an Eddy Current Damper for Structural Vibration Control[J/OL]. Journal of Aerospace Engineering, 2018, 31(5): 04018063.
[42] DOWNEY A, CAO L, LAFLAMME S, et al. High capacity variable friction damper based on band brake technology[J/OL]. Engineering Structures, 2016, 113: 287-298.
[43] LAFFRANCHI M, CHEN L, KASHIRI N, et al. Development and control of a series elastic actuator equipped with a semi active friction damper for human friendly robots[J/OL]. Robotics and Autonomous Systems, 2014, 62(12): 1827-1836.
[44] LAFFRANCHI M, TSAGARAKIS N G, CALDWELL D G. CompActTM arm: A compliant manipulator with intrinsic variable physical damping[J/OL]. Robotics: Science and Systems, 2013, 8: 225-232.
[45] KASHIRI N, MEDRANO-CERDA G A, TSAGARAKIS N G, et al. Damping control of variable damping compliant actuators[C/OL]//2015 IEEE International Conference on Robotics and Automation (ICRA). 2015: 850-856. DOI:10.1109/ICRA.2015.7139277.
[46] SARAKOGLOU I, TSAGARAKIS N G, CALDWELL D G. Development of a hybrid actuator with controllable mechanical damping[C/OL]//2014 IEEE International Conference on Robotics and Automation (ICRA). 2014: 1078-1083. DOI:10.1109/ICRA.2014.6906988.
[47] ASANO K, HATAKEYAMA F, YATSUZUKA K. Fundamental study of an electrostatic chuck for silicon wafer handling[J/OL]. IEEE Transactions on Industry Applications, 2002, 38(3): 840-845.
[48] ZHOU X, TIAN P, SHER C W, et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display[J/OL]. Progress in Quantum Electronics, 2020, 71(April): 100263.
[49] HINCHET R, SHEA H. High Force Density Textile Electrostatic Clutch[J/OL]. Advanced Materials Technologies, 2020, 5(4): 1-7.
[50] HINCHET R, VECHEV V, SHEA H, et al. Dextres: Wearable haptic feedback for grasping in VR via a thin form-factor electrostatic brake[C/OL]//Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology. 2018: 901-912. DOI:10.1145/3242587.3242657.
[51] DILLER S, MAJIDI C, COLLINS S H. A lightweight, low-power electroadhesive clutch and spring for exoskeleton actuation[C/OL]//2016 IEEE International Conference on Robotics and Automation (ICRA). 2016: 682-689. DOI:10.1109/ICRA.2016.7487194.
[52] GUO J, BAMBER T, ZHAO Y, et al. Toward Adaptive and Intelligent Electroadhesives for Robotic Material Handling[J/OL]. IEEE Robotics and Automation Letters, 2017, 2(2): 538-545.
[53] CHU B, JUNG K, HAN C S, et al. A survey of climbing robots: Locomotion and adhesion[J/OL]. International Journal of Precision Engineering and Manufacturing, 2010, 11(4): 633-647.
[54] SCHMIDT D, BERNS K. Climbing robots for maintenance and inspections of vertical structures - A survey of design aspects and technologies[J/OL]. Robotics and Autonomous Systems, 2013, 61(12): 1288-1305.
[55] RAMACHANDRAN V, SHINTAKE J, FLOREANO D. All-Fabric Wearable Electroadhesive Clutch[J/OL]. Advanced Materials Technologies, 2019, 4(2): 1-15.
[56] GRIGORII R V., COLGATE J E. Closed Loop Application of Electroadhesion for Increased Precision in Texture Rendering[J/OL]. IEEE Transactions on Haptics, 2020, 13(1): 253-258.
[57] SIRIN O, AYYILDIZ M, PERSSON B, et al. Electroadhesion with application to touchscreens[J]. Soft Matter, 2021, 15(8): 1758-1775.
[58] DILLER S B, COLLINS S H, MAJIDI C. The effects of electroadhesive clutch design parameters on performance characteristics[J/OL]. Journal of Intelligent Material Systems and Structures, 2018, 29(19): 3804-3828.
[59] JIANG H, HAWKES E W, FULLER C, et al. A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity[J/OL]. Science Robotics, 2017, 2(7): 1-12.
[60] CHEN A S, BERGBREITER S. A comparison of critical shear force in low-voltage, all-polymer electroadhesives to a basic friction model[J/OL]. Smart Materials and Structures, 2017, 26(2).
[61] NAKAMURA T, YAMAMOTO A. Modeling and control of electroadhesion force in DC voltage[J/OL]. ROBOMECH Journal, 2017, 4(1).
[62] GRIGORII R V., COLGATE J E. Closed Loop Application of Electroadhesion for Increased Precision in Texture Rendering[J/OL]. IEEE Transactions on Haptics, 2020, 13(1): 253-258.
[63] GUO J, TAILOR M, BAMBER T, et al. Investigation of relationship between interfacial electroadhesive force and surface texture[J/OL]. Journal of Physics D: Applied Physics, 2015, 49(3).
[64] CHEN R, ZHANG Z, SONG R, et al. Time-dependent electroadhesive force degradation[J/OL]. Smart Materials and Structures, 2020, 29(5).
[65] MIN D, LI S, CHO M, et al. Investigation into surface potential decay of polyimide by unipolar charge transport model[J/OL]. IEEE Transactions on Plasma Science, 2013, 41(12): 3349-3358.
[66] CHOI C, MA Y, SEQUEIRA S, et al. Effect of Surface Temperature on Finger Friction and Perception in Electroadhesion[C/OL]//2021 IEEE World Haptics Conference (WHC). IEEE, 2021: 680-684. DOI:10.1109/WHC49131.2021.9517137.
[67] YAMAMOTO A, NAGASAWA S, YAMAMOTO H, et al. Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems[J/OL]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(2): 168-177.
[68] KANNO S, KATO K, YOSHIOKA K, et al. Prediction of clamping pressure in a Johnsen-Rahbek-type electrostatic chuck based on circuit simulation[J/OL]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2006, 24(1): 216.
[69] NAKAMURA T, YAMAMOTO A. Multi-finger electrostatic passive haptic feedback on a visual display[C/OL]//2013 World Haptics Conference, WHC 2013. IEEE, 2013: 37-42. DOI:10.1109/WHC.2013.6548381.
[70] MEYER D J, PESHKIN M A, COLGATE J E. Fingertip friction modulation due to electrostatic attraction[C/OL]//2013 World Haptics Conference (WHC). 2013: 43-48. DOI:10.1109/WHC.2013.6548382.
[71] VEZZOLI E, AMBERG M, LEMAIRE-SEMAIL B, et al. Electrovibration Modeling Analysis[C]//International Conference on Human Haptic Sensing and Touch Enabled Computer Applications. 2014: 369-376.
[72] QIN S, MCTEER A. Wafer dependence of Johnsen-Rahbek type electrostatic chuck for semiconductor processes[J/OL]. Journal of Applied Physics, 2007, 102(6).
[73] DAVIDSON J R, KREBS H I. An Electrorheological Fluid Actuator for Rehabilitation Robotics[J/OL]. IEEE/ASME Transactions on Mechatronics, 2018, 23(5): 2158-2167.
[74] RAHMAN M, ONG Z C, JULAI S, et al. A review of advances in magnetorheological dampers : their design optimization and applications[J]. Journal of Zhejiang University-Science A, 2017, 18(12): 991-1010
修改评论