中文版 | English
题名

基于静电吸附的可控变阻尼器的设计与控制方法研究

其他题名
DESIGN AND CONTROL OF ANELECTROADHESIVE VARIABLE DAMPER
姓名
姓名拼音
LIANG Xuanquan
学号
11930624
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
王宏强
导师单位
机械与能源工程系
论文答辩日期
2022-05-10
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,机器人越来越在人类的日常生产生活中占据重要的位置。阻尼装置对于这些机器人系统来说至关重要,是影响系统动态性能的关键部件。为了提高机器人的适应性,可变阻尼受到广泛的关注。可变阻尼目前主要依赖于电磁驱动、液压、磁流变液体、电流变液体等。这些方法虽然可以实现阻尼的受控变化,但是它们一般体积大、重量大,耗能高,难以满足有轻量化和长续航需求的移动式机器人、外骨骼装置、可穿戴设备等系统。另一方面,新兴的静电吸附技术有着结构和工艺简单、轻量、能耗极低等优点,为轻量化和低能耗的变阻尼器提供了一种潜在的解决方案。

本文针对上述机器人系统对低能耗和轻量化的变阻尼器的需求,提出一种基于静电吸附的可控变阻尼器设计方案及其控制策略,主要研究内容如下:

1针对目前静电吸附力控制不精准的问题,提出了基于模型的控制策略,构建了能更准确描述静电吸附动态行为的力电模型,应用了线性时变模型预测控制算法,提高了控制精度:跟踪方波参考曲线的响应时间(32 ms)比比例-积分-微分(PID)算法缩短了65.96%。跟踪正弦波和三角波曲线的跟踪误差比PID分别少了43.75%47.06%

2针对目前的直线型静电吸附测试平台不能实现连续测量数据的缺点,设计了可控速的旋转型静电吸附控制测试平台,实现了大量数据的连续采集,便于静电吸附系统的系统辨识以及控制器参数调试。

3)设计一种轻量、低功耗的基于静电吸附的可控变阻尼器,其阻尼最大变化值为51.45 N,运行期间的平均功率最高不超过0.38 mW。基于该变阻尼装置,设计了基于静电吸附变阻尼的单足机器人,以探究其在足式机器人上的应用。测试表明该技术可提高5 kg最大额外静态负载和47.0%最大动态缓冲能量消耗率。

其他摘要

Recently, robots have played an important role in the society and manufacturing. Damping devices are critical to these robotic systems and are key components that determine the dynamic performance of the system. Variable damping has received extensive attention in order to improve the adaptability of robots. Variable damping currently relies on electromagnetic actuators, hydraulics, magnetorheological fluids, or electrorheological fluids. Although these methods can change damping, the resultant dampers are typical large, heavy, and energy-consuming, making it difficult to meet the needs of mobile robots, exoskeleton devices, wearable devices, and other systems that require lightweight and long-endurance. On the other hand, the emerging electrostatic adhesion technology has the advantages of simple structure and manufacturing process, light weight, and very low energy consumption, which provides a potential solution for variable dampers of lightweight and low energy consumption.

In this thesis, the design and control methods of a controllable variable damper based on electroadhesion are proposed to address the above demand. The main contributions are as follows:

(1) To improve the poor accuracy generated by the previous control method, a model-based control strategy is proposed. An electromechanical model is constructed which can more accurately describe the dynamic behavior of electroadhesion, and the linear time-varying model predictive control algorithm is applied to improve the control accuracy. The response time (32 ms) while tracking the square wave is shortened by 65.96% compared with proportional–integral–derivative (PID) algorithm. The tracking errors are 43.75% and 47.06% less than PID when tracking sinusoidal and triangular curves, respectively.

(2) Previous electroadhesion test platform can hardly achieve large data continuously for the parameter identification and model verification. To address this problem, a rotating electroadhesive test platform is designed to achieve continuous acquisition of data, which is convenient for system identification and controller parameter tuning of the electroadhesion system.

(3) A lightweight, low-power electroadhesion-based variable damper is implemented in this thesis finally. The maximum damping force is 51.45 N. The maximum average power is about 0.38 mW during operation. To explore its application to legged robots, a unipedal robot with the electroadhesion variable damper integrated at the knee joint is designed. The damper increases the maximum load by 5 kg when the robot is at rest and the maximum energy consumption rate by 47.0% when the robot resists impact.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] 邓蕊, 王亚慧, 利辉刑, 等. 一种管道探测蛇形机器人的建模仿真与实验研究[J]. 小型微型计算机系统, 2021, 42(12).

[2] WANG P, LI X, JIANG W H, et al. Research on walking stability of quadruped search-rescue robot[J/OL]. Applied Mechanics and Materials, 2011, 63-64: 831-834.

[3] YOO L S, LEE J H, LEE Y K, et al. Application of a drone magnetometer system to military mine detection in the demilitarized zone[J/OL]. Sensors, 2021, 21(9).

[4] SUN Y, GUAN L, CHANG Z, et al. Design of a low-cost indoor navigation system for food delivery robot based on multi-sensor information fusion[J/OL]. Sensors (Switzerland), 2019, 19(22).

[5] JI W, WANG L. Industrial robotic machining: a review[J/OL]. International Journal of Advanced Manufacturing Technology, 2019, 103(1-4): 1239-1255.

[6] ZOSS A B, KAZEROONI H, CHU A. Biomechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX)[J/OL]. IEEE/ASME Transactions on Mechatronics, 2006, 11(2): 128-138.

[7] BERNHARDT M, FREY M, COLOMBO G, et al. Hybrid Force-Position Control Yields Cooperative Behaviour of the Rehabilitation Robot LOKOMAT[C]//9th International Conference on Rehabilitation Robotics. 2005: 536-539.

[8] BANALA S K, KIM H, AGRAWAL S K, et al. Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX)[J/OL]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2009, 17(1)

[2022-02-18].

[9] SU B Y, WANG J, LIU S Q, et al. A cnn-based method for intent recognition using inertial measurement units and intelligent lower limb prosthesis[J/OL]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(5): 1032-1042.

[10] GOSLINE A H, CAMPION G, HAYWARD V. On The Use of Eddy Current Brakes as Tunable , Fast Turn-On Viscous Dampers For Haptic Rendering[J]. Proceedings of Eurohaptics, 2006, 3: 229-234.

[11] YANG L, ZHANG J, XU Y, et al. Energy performance analysis of a suspended backpack with an optimally controlled variable damper for human load carriage[J/OL]. Mechanism and Machine Theory, 2020, 146.

[12] SCHOLL P, GRABOSCH V, ESLAMY M, et al. Comparison of peak power and energy requirements in different actuation concepts for active knee prosthesis[J/OL]. 2015 IEEE International Conference on Mechatronics and Automation, ICMA 2015, 2015: 1448-1453.

[13] TAGLIAMONTE N L, SERGI F, CARPINO G, et al. Design of a variable impedance differential actuator for wearable robotics applications[C/OL]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010: 2639-2644. DOI:10.1109/IROS.2010.5649982.

[14] WANG D, WANG Y, ZI B, et al. Development of an active and passive finger rehabilitation robot using pneumatic muscle and magnetorheological damper[J/OL]. Mechanism and Machine Theory, 2020, 147: 1-16.

[15] DI NATALI C, CHINI G, TOTARO M, et al. Quasi-passive resistive exosuit for space activities: Proof of concept[J/OL]. Applied Sciences (Switzerland), 2021, 11(8).

[16] 毕彦瑞. 下肢康复训练机器人的设计研究[D]. 2020.

[17] GUO J, ELGENEIDY K, XIANG C, et al. Soft pneumatic grippers embedded with stretchable electroadhesion[J/OL]. Smart Materials and Structures, 2018, 27(5).

[18] GUO J, LENG J, ROSSITER J. Electroadhesion Technologies for Robotics: A Comprehensive Review[J/OL]. IEEE Transactions on Robotics, 2020, 36(2): 313-327.

[19] GRAULE M A, CHIRARATTANANON P, FULLER S B, et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion[J/OL]. Science, 2016, 352(6288): 978-982.

[20] SHINTAKE J, ROSSET S, SCHUBERT B, et al. Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators[J/OL]. Advanced Materials, 2016, 28(2): 231-238.

[21] GRIMMINGER F, MEDURI A, KHADIV M, et al. An Open Torque-Controlled Modular Robot Architecture for Legged Locomotion Research[J/OL]. IEEE Robotics and Automation Letters, 2020, 5(2): 3650-3657.

[22] KWON T B, SONG J B. Force display using a hybrid haptic device composed of motors and brakes[J/OL]. Mechatronics, 2006, 16(5): 249-257.

[23] FAUTEUX P, LAURIA M, HEINTZ B, et al. Dual-differential rheological actuator for high-performance physical robotic interaction[J/OL]. IEEE Transactions on Robotics, 2010, 26(4): 607-618.

[24] ANDRADE R M, FILHO A B, VIMIEIRO C B S, et al. Optimal design and torque control of an active magnetorheological prosthetic knee[J/OL]. Smart Materials and Structures, 2018, 27(10).

[25] WALSH C J, PALUSKA D, PASCH K, et al. Development of a lightweight, underactuated exoskeleton for load-carrying augmentation[C/OL]//Proceedings 2006 IEEE International Conference on Robotics and Automation. 2006: 3485-3491. DOI:10.1109/ROBOT.2006.1642234.

[26] CARPINO G, ACCOTO D, DI PALO M, et al. Design of a rotary passive viscoelastic joint for wearable robots[C/OL]//2011 IEEE International Conference on Rehabilitation Robotics. IEEE, 2011: 1-6. DOI:10.1109/ICORR.2011.5975356.

[27] NIE S, ZHUANG Y, WANG Y, et al. Velocity & displacement-dependent damper: A novel passive shock absorber inspired by the semi-active control[J/OL]. Mechanical Systems and Signal Processing, 2018, 99: 730-746.

[28] 刘国勇, 侯永涛, 刘海平, 等. 星载飞轮双状态隔离用变刚度摩擦阻尼器[J]. 光学精密工程, 2020, 28(7).

[29] MONTELEONE S, NEGRELLO F, CATALANO M G, et al. Damping in Compliant Actuation: A Review[J/OL]. IEEE Robotics and Automation Magazine, 2022.

[30] CATALANO M, GRIOLI G, GARABINI M, et al. A Variable Damping module for Variable Impedance Actuation[C/OL]//2012 IEEE International Conference on Robotics and Automation. 2012: 2666-2672. DOI:10.1109/ICRA.2012.6224938.

[31] ZHI D, FENG Z, XU W, et al. Design and Control of a Variable Viscous Damping Actuator (VVDA) for Compliant Robotic Joints[C/OL]//2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2018: 1876-1881. DOI:10.1109/ROBIO.2018.8665039.

[32] DONG X, LIU W, WANG X, et al. Research on variable stiffness and damping magnetorheological actuator for robot joint[C/OL]//International Conference on Intelligent Robotics and Applications: Vol. 10464. 2017: 109-119. DOI:10.1007/978-3-319-65298-6_11.

[33] ZHANG C, LI X, ZHANG S, et al. Design and experiment evaluation of a magneto-rheological damper for the legged robot[C/OL]//2018 IEEE International Conference on Real-time Computing and Robotics (RCAR). 2018: 687-692. DOI:10.1109/RCAR.2018.8621745.

[34] GARCIA E, AREVALO J C. Combining series elastic actuation and magneto-rheological damping for the control of agile locomotion[J]. Robotics and Autonomous Systems, 2011, 59(10): 827-839.

[35] KHANICHEH A, MINTZOPOULOS D, WEINBERG B, et al. Evaluation of electrorheological fluid dampers for applications at 3-T MRI environment[J/OL]. IEEE/ASME Transactions on Mechatronics, 2008, 13(3): 286-294.

[36] LI J, JIN D, ZHANG X. An Electrorheological Fluid Damper for Robots[C]//Proceedings of 1995 IEEE International Conference on Robotics and Automation. 1995: 2631-2636.

[37] BELL R C, MILLER E D, KARLI J O, et al. Influence of particle shape on the properties of magnetorheological fluids[C/OL]//International Journal of Modern Physics B. 2007: 5018-5025. DOI:10.1142/9789812771209_0109.

[38] FOULC J N. Electrorheological Fluids[J/OL]. Dielectric Materials for Electrical Engineering, 2013: 379-402.

[39] ENOCH A, SUTAS A, NAKAOKA S, et al. BLUE: A bipedal robot with variable stiffness and damping[C/OL]//2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012). 2012: 487-494. DOI:10.1109/HUMANOIDS.2012.6651564.

[40] WU F, HOWARD M. Energy regenerative damping in variable impedance actuators for long-term robotic deployment[J/OL]. IEEE Transactions on Robotics, 2020, 36(6): 1778-1790.

[41] HUANG Z W, HUA X G, CHEN Z Q, et al. Modeling, Testing, and Validation of an Eddy Current Damper for Structural Vibration Control[J/OL]. Journal of Aerospace Engineering, 2018, 31(5): 04018063.

[42] DOWNEY A, CAO L, LAFLAMME S, et al. High capacity variable friction damper based on band brake technology[J/OL]. Engineering Structures, 2016, 113: 287-298.

[43] LAFFRANCHI M, CHEN L, KASHIRI N, et al. Development and control of a series elastic actuator equipped with a semi active friction damper for human friendly robots[J/OL]. Robotics and Autonomous Systems, 2014, 62(12): 1827-1836.

[44] LAFFRANCHI M, TSAGARAKIS N G, CALDWELL D G. CompActTM arm: A compliant manipulator with intrinsic variable physical damping[J/OL]. Robotics: Science and Systems, 2013, 8: 225-232.

[45] KASHIRI N, MEDRANO-CERDA G A, TSAGARAKIS N G, et al. Damping control of variable damping compliant actuators[C/OL]//2015 IEEE International Conference on Robotics and Automation (ICRA). 2015: 850-856. DOI:10.1109/ICRA.2015.7139277.

[46] SARAKOGLOU I, TSAGARAKIS N G, CALDWELL D G. Development of a hybrid actuator with controllable mechanical damping[C/OL]//2014 IEEE International Conference on Robotics and Automation (ICRA). 2014: 1078-1083. DOI:10.1109/ICRA.2014.6906988.

[47] ASANO K, HATAKEYAMA F, YATSUZUKA K. Fundamental study of an electrostatic chuck for silicon wafer handling[J/OL]. IEEE Transactions on Industry Applications, 2002, 38(3): 840-845.

[48] ZHOU X, TIAN P, SHER C W, et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display[J/OL]. Progress in Quantum Electronics, 2020, 71(April): 100263.

[49] HINCHET R, SHEA H. High Force Density Textile Electrostatic Clutch[J/OL]. Advanced Materials Technologies, 2020, 5(4): 1-7.

[50] HINCHET R, VECHEV V, SHEA H, et al. Dextres: Wearable haptic feedback for grasping in VR via a thin form-factor electrostatic brake[C/OL]//Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology. 2018: 901-912. DOI:10.1145/3242587.3242657.

[51] DILLER S, MAJIDI C, COLLINS S H. A lightweight, low-power electroadhesive clutch and spring for exoskeleton actuation[C/OL]//2016 IEEE International Conference on Robotics and Automation (ICRA). 2016: 682-689. DOI:10.1109/ICRA.2016.7487194.

[52] GUO J, BAMBER T, ZHAO Y, et al. Toward Adaptive and Intelligent Electroadhesives for Robotic Material Handling[J/OL]. IEEE Robotics and Automation Letters, 2017, 2(2): 538-545.

[53] CHU B, JUNG K, HAN C S, et al. A survey of climbing robots: Locomotion and adhesion[J/OL]. International Journal of Precision Engineering and Manufacturing, 2010, 11(4): 633-647.

[54] SCHMIDT D, BERNS K. Climbing robots for maintenance and inspections of vertical structures - A survey of design aspects and technologies[J/OL]. Robotics and Autonomous Systems, 2013, 61(12): 1288-1305.

[55] RAMACHANDRAN V, SHINTAKE J, FLOREANO D. All-Fabric Wearable Electroadhesive Clutch[J/OL]. Advanced Materials Technologies, 2019, 4(2): 1-15.

[56] GRIGORII R V., COLGATE J E. Closed Loop Application of Electroadhesion for Increased Precision in Texture Rendering[J/OL]. IEEE Transactions on Haptics, 2020, 13(1): 253-258.

[57] SIRIN O, AYYILDIZ M, PERSSON B, et al. Electroadhesion with application to touchscreens[J]. Soft Matter, 2021, 15(8): 1758-1775.

[58] DILLER S B, COLLINS S H, MAJIDI C. The effects of electroadhesive clutch design parameters on performance characteristics[J/OL]. Journal of Intelligent Material Systems and Structures, 2018, 29(19): 3804-3828.

[59] JIANG H, HAWKES E W, FULLER C, et al. A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity[J/OL]. Science Robotics, 2017, 2(7): 1-12.

[60] CHEN A S, BERGBREITER S. A comparison of critical shear force in low-voltage, all-polymer electroadhesives to a basic friction model[J/OL]. Smart Materials and Structures, 2017, 26(2).

[61] NAKAMURA T, YAMAMOTO A. Modeling and control of electroadhesion force in DC voltage[J/OL]. ROBOMECH Journal, 2017, 4(1).

[62] GRIGORII R V., COLGATE J E. Closed Loop Application of Electroadhesion for Increased Precision in Texture Rendering[J/OL]. IEEE Transactions on Haptics, 2020, 13(1): 253-258.

[63] GUO J, TAILOR M, BAMBER T, et al. Investigation of relationship between interfacial electroadhesive force and surface texture[J/OL]. Journal of Physics D: Applied Physics, 2015, 49(3).

[64] CHEN R, ZHANG Z, SONG R, et al. Time-dependent electroadhesive force degradation[J/OL]. Smart Materials and Structures, 2020, 29(5).

[65] MIN D, LI S, CHO M, et al. Investigation into surface potential decay of polyimide by unipolar charge transport model[J/OL]. IEEE Transactions on Plasma Science, 2013, 41(12): 3349-3358.

[66] CHOI C, MA Y, SEQUEIRA S, et al. Effect of Surface Temperature on Finger Friction and Perception in Electroadhesion[C/OL]//2021 IEEE World Haptics Conference (WHC). IEEE, 2021: 680-684. DOI:10.1109/WHC49131.2021.9517137

[1] 邓蕊, 王亚慧, 利辉刑, 等. 一种管道探测蛇形机器人的建模仿真与实验研究[J]. 小型微型计算机系统, 2021, 42(12).

[2] WANG P, LI X, JIANG W H, et al. Research on walking stability of quadruped search-rescue robot[J/OL]. Applied Mechanics and Materials, 2011, 63-64: 831-834.

[3] YOO L S, LEE J H, LEE Y K, et al. Application of a drone magnetometer system to military mine detection in the demilitarized zone[J/OL]. Sensors, 2021, 21(9).

[4] SUN Y, GUAN L, CHANG Z, et al. Design of a low-cost indoor navigation system for food delivery robot based on multi-sensor information fusion[J/OL]. Sensors (Switzerland), 2019, 19(22).

[5] JI W, WANG L. Industrial robotic machining: a review[J/OL]. International Journal of Advanced Manufacturing Technology, 2019, 103(1-4): 1239-1255.

[6] ZOSS A B, KAZEROONI H, CHU A. Biomechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX)[J/OL]. IEEE/ASME Transactions on Mechatronics, 2006, 11(2): 128-138.

[7] BERNHARDT M, FREY M, COLOMBO G, et al. Hybrid Force-Position Control Yields Cooperative Behaviour of the Rehabilitation Robot LOKOMAT[C]//9th International Conference on Rehabilitation Robotics. 2005: 536-539.

[8] BANALA S K, KIM H, AGRAWAL S K, et al. Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX)[J/OL]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2009, 17(1)

[2022-02-18].

[9] SU B Y, WANG J, LIU S Q, et al. A cnn-based method for intent recognition using inertial measurement units and intelligent lower limb prosthesis[J/OL]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(5): 1032-1042.

[10] GOSLINE A H, CAMPION G, HAYWARD V. On The Use of Eddy Current Brakes as Tunable , Fast Turn-On Viscous Dampers For Haptic Rendering[J]. Proceedings of Eurohaptics, 2006, 3: 229-234.

[11] YANG L, ZHANG J, XU Y, et al. Energy performance analysis of a suspended backpack with an optimally controlled variable damper for human load carriage[J/OL]. Mechanism and Machine Theory, 2020, 146.

[12] SCHOLL P, GRABOSCH V, ESLAMY M, et al. Comparison of peak power and energy requirements in different actuation concepts for active knee prosthesis[J/OL]. 2015 IEEE International Conference on Mechatronics and Automation, ICMA 2015, 2015: 1448-1453.

[13] TAGLIAMONTE N L, SERGI F, CARPINO G, et al. Design of a variable impedance differential actuator for wearable robotics applications[C/OL]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010: 2639-2644. DOI:10.1109/IROS.2010.5649982.

[14] WANG D, WANG Y, ZI B, et al. Development of an active and passive finger rehabilitation robot using pneumatic muscle and magnetorheological damper[J/OL]. Mechanism and Machine Theory, 2020, 147: 1-16.

[15] DI NATALI C, CHINI G, TOTARO M, et al. Quasi-passive resistive exosuit for space activities: Proof of concept[J/OL]. Applied Sciences (Switzerland), 2021, 11(8).

[16] 毕彦瑞. 下肢康复训练机器人的设计研究[D]. 2020.

[17] GUO J, ELGENEIDY K, XIANG C, et al. Soft pneumatic grippers embedded with stretchable electroadhesion[J/OL]. Smart Materials and Structures, 2018, 27(5).

[18] GUO J, LENG J, ROSSITER J. Electroadhesion Technologies for Robotics: A Comprehensive Review[J/OL]. IEEE Transactions on Robotics, 2020, 36(2): 313-327.

[19] GRAULE M A, CHIRARATTANANON P, FULLER S B, et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion[J/OL]. Science, 2016, 352(6288): 978-982.

[20] SHINTAKE J, ROSSET S, SCHUBERT B, et al. Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators[J/OL]. Advanced Materials, 2016, 28(2): 231-238.

[21] GRIMMINGER F, MEDURI A, KHADIV M, et al. An Open Torque-Controlled Modular Robot Architecture for Legged Locomotion Research[J/OL]. IEEE Robotics and Automation Letters, 2020, 5(2): 3650-3657.

[22] KWON T B, SONG J B. Force display using a hybrid haptic device composed of motors and brakes[J/OL]. Mechatronics, 2006, 16(5): 249-257.

[23] FAUTEUX P, LAURIA M, HEINTZ B, et al. Dual-differential rheological actuator for high-performance physical robotic interaction[J/OL]. IEEE Transactions on Robotics, 2010, 26(4): 607-618.

[24] ANDRADE R M, FILHO A B, VIMIEIRO C B S, et al. Optimal design and torque control of an active magnetorheological prosthetic knee[J/OL]. Smart Materials and Structures, 2018, 27(10).

[25] WALSH C J, PALUSKA D, PASCH K, et al. Development of a lightweight, underactuated exoskeleton for load-carrying augmentation[C/OL]//Proceedings 2006 IEEE International Conference on Robotics and Automation. 2006: 3485-3491. DOI:10.1109/ROBOT.2006.1642234.

[26] CARPINO G, ACCOTO D, DI PALO M, et al. Design of a rotary passive viscoelastic joint for wearable robots[C/OL]//2011 IEEE International Conference on Rehabilitation Robotics. IEEE, 2011: 1-6. DOI:10.1109/ICORR.2011.5975356.

[27] NIE S, ZHUANG Y, WANG Y, et al. Velocity & displacement-dependent damper: A novel passive shock absorber inspired by the semi-active control[J/OL]. Mechanical Systems and Signal Processing, 2018, 99: 730-746.

[28] 刘国勇, 侯永涛, 刘海平, 等. 星载飞轮双状态隔离用变刚度摩擦阻尼器[J]. 光学精密工程, 2020, 28(7).

[29] MONTELEONE S, NEGRELLO F, CATALANO M G, et al. Damping in Compliant Actuation: A Review[J/OL]. IEEE Robotics and Automation Magazine, 2022.

[30] CATALANO M, GRIOLI G, GARABINI M, et al. A Variable Damping module for Variable Impedance Actuation[C/OL]//2012 IEEE International Conference on Robotics and Automation. 2012: 2666-2672. DOI:10.1109/ICRA.2012.6224938.

[31] ZHI D, FENG Z, XU W, et al. Design and Control of a Variable Viscous Damping Actuator (VVDA) for Compliant Robotic Joints[C/OL]//2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2018: 1876-1881. DOI:10.1109/ROBIO.2018.8665039.

[32] DONG X, LIU W, WANG X, et al. Research on variable stiffness and damping magnetorheological actuator for robot joint[C/OL]//International Conference on Intelligent Robotics and Applications: Vol. 10464. 2017: 109-119. DOI:10.1007/978-3-319-65298-6_11.

[33] ZHANG C, LI X, ZHANG S, et al. Design and experiment evaluation of a magneto-rheological damper for the legged robot[C/OL]//2018 IEEE International Conference on Real-time Computing and Robotics (RCAR). 2018: 687-692. DOI:10.1109/RCAR.2018.8621745.

[34] GARCIA E, AREVALO J C. Combining series elastic actuation and magneto-rheological damping for the control of agile locomotion[J]. Robotics and Autonomous Systems, 2011, 59(10): 827-839.

[35] KHANICHEH A, MINTZOPOULOS D, WEINBERG B, et al. Evaluation of electrorheological fluid dampers for applications at 3-T MRI environment[J/OL]. IEEE/ASME Transactions on Mechatronics, 2008, 13(3): 286-294.

[36] LI J, JIN D, ZHANG X. An Electrorheological Fluid Damper for Robots[C]//Proceedings of 1995 IEEE International Conference on Robotics and Automation. 1995: 2631-2636.

[37] BELL R C, MILLER E D, KARLI J O, et al. Influence of particle shape on the properties of magnetorheological fluids[C/OL]//International Journal of Modern Physics B. 2007: 5018-5025. DOI:10.1142/9789812771209_0109.

[38] FOULC J N. Electrorheological Fluids[J/OL]. Dielectric Materials for Electrical Engineering, 2013: 379-402.

[39] ENOCH A, SUTAS A, NAKAOKA S, et al. BLUE: A bipedal robot with variable stiffness and damping[C/OL]//2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012). 2012: 487-494. DOI:10.1109/HUMANOIDS.2012.6651564.

[40] WU F, HOWARD M. Energy regenerative damping in variable impedance actuators for long-term robotic deployment[J/OL]. IEEE Transactions on Robotics, 2020, 36(6): 1778-1790.

[41] HUANG Z W, HUA X G, CHEN Z Q, et al. Modeling, Testing, and Validation of an Eddy Current Damper for Structural Vibration Control[J/OL]. Journal of Aerospace Engineering, 2018, 31(5): 04018063.

[42] DOWNEY A, CAO L, LAFLAMME S, et al. High capacity variable friction damper based on band brake technology[J/OL]. Engineering Structures, 2016, 113: 287-298.

[43] LAFFRANCHI M, CHEN L, KASHIRI N, et al. Development and control of a series elastic actuator equipped with a semi active friction damper for human friendly robots[J/OL]. Robotics and Autonomous Systems, 2014, 62(12): 1827-1836.

[44] LAFFRANCHI M, TSAGARAKIS N G, CALDWELL D G. CompActTM arm: A compliant manipulator with intrinsic variable physical damping[J/OL]. Robotics: Science and Systems, 2013, 8: 225-232.

[45] KASHIRI N, MEDRANO-CERDA G A, TSAGARAKIS N G, et al. Damping control of variable damping compliant actuators[C/OL]//2015 IEEE International Conference on Robotics and Automation (ICRA). 2015: 850-856. DOI:10.1109/ICRA.2015.7139277.

[46] SARAKOGLOU I, TSAGARAKIS N G, CALDWELL D G. Development of a hybrid actuator with controllable mechanical damping[C/OL]//2014 IEEE International Conference on Robotics and Automation (ICRA). 2014: 1078-1083. DOI:10.1109/ICRA.2014.6906988.

[47] ASANO K, HATAKEYAMA F, YATSUZUKA K. Fundamental study of an electrostatic chuck for silicon wafer handling[J/OL]. IEEE Transactions on Industry Applications, 2002, 38(3): 840-845.

[48] ZHOU X, TIAN P, SHER C W, et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display[J/OL]. Progress in Quantum Electronics, 2020, 71(April): 100263.

[49] HINCHET R, SHEA H. High Force Density Textile Electrostatic Clutch[J/OL]. Advanced Materials Technologies, 2020, 5(4): 1-7.

[50] HINCHET R, VECHEV V, SHEA H, et al. Dextres: Wearable haptic feedback for grasping in VR via a thin form-factor electrostatic brake[C/OL]//Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology. 2018: 901-912. DOI:10.1145/3242587.3242657.

[51] DILLER S, MAJIDI C, COLLINS S H. A lightweight, low-power electroadhesive clutch and spring for exoskeleton actuation[C/OL]//2016 IEEE International Conference on Robotics and Automation (ICRA). 2016: 682-689. DOI:10.1109/ICRA.2016.7487194.

[52] GUO J, BAMBER T, ZHAO Y, et al. Toward Adaptive and Intelligent Electroadhesives for Robotic Material Handling[J/OL]. IEEE Robotics and Automation Letters, 2017, 2(2): 538-545.

[53] CHU B, JUNG K, HAN C S, et al. A survey of climbing robots: Locomotion and adhesion[J/OL]. International Journal of Precision Engineering and Manufacturing, 2010, 11(4): 633-647.

[54] SCHMIDT D, BERNS K. Climbing robots for maintenance and inspections of vertical structures - A survey of design aspects and technologies[J/OL]. Robotics and Autonomous Systems, 2013, 61(12): 1288-1305.

[55] RAMACHANDRAN V, SHINTAKE J, FLOREANO D. All-Fabric Wearable Electroadhesive Clutch[J/OL]. Advanced Materials Technologies, 2019, 4(2): 1-15.

[56] GRIGORII R V., COLGATE J E. Closed Loop Application of Electroadhesion for Increased Precision in Texture Rendering[J/OL]. IEEE Transactions on Haptics, 2020, 13(1): 253-258.

[57] SIRIN O, AYYILDIZ M, PERSSON B, et al. Electroadhesion with application to touchscreens[J]. Soft Matter, 2021, 15(8): 1758-1775.

[58] DILLER S B, COLLINS S H, MAJIDI C. The effects of electroadhesive clutch design parameters on performance characteristics[J/OL]. Journal of Intelligent Material Systems and Structures, 2018, 29(19): 3804-3828.

[59] JIANG H, HAWKES E W, FULLER C, et al. A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity[J/OL]. Science Robotics, 2017, 2(7): 1-12.

[60] CHEN A S, BERGBREITER S. A comparison of critical shear force in low-voltage, all-polymer electroadhesives to a basic friction model[J/OL]. Smart Materials and Structures, 2017, 26(2).

[61] NAKAMURA T, YAMAMOTO A. Modeling and control of electroadhesion force in DC voltage[J/OL]. ROBOMECH Journal, 2017, 4(1).

[62] GRIGORII R V., COLGATE J E. Closed Loop Application of Electroadhesion for Increased Precision in Texture Rendering[J/OL]. IEEE Transactions on Haptics, 2020, 13(1): 253-258.

[63] GUO J, TAILOR M, BAMBER T, et al. Investigation of relationship between interfacial electroadhesive force and surface texture[J/OL]. Journal of Physics D: Applied Physics, 2015, 49(3).

[64] CHEN R, ZHANG Z, SONG R, et al. Time-dependent electroadhesive force degradation[J/OL]. Smart Materials and Structures, 2020, 29(5).

[65] MIN D, LI S, CHO M, et al. Investigation into surface potential decay of polyimide by unipolar charge transport model[J/OL]. IEEE Transactions on Plasma Science, 2013, 41(12): 3349-3358.

[66] CHOI C, MA Y, SEQUEIRA S, et al. Effect of Surface Temperature on Finger Friction and Perception in Electroadhesion[C/OL]//2021 IEEE World Haptics Conference (WHC). IEEE, 2021: 680-684. DOI:10.1109/WHC49131.2021.9517137.

[67] YAMAMOTO A, NAGASAWA S, YAMAMOTO H, et al. Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems[J/OL]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(2): 168-177.

[68] KANNO S, KATO K, YOSHIOKA K, et al. Prediction of clamping pressure in a Johnsen-Rahbek-type electrostatic chuck based on circuit simulation[J/OL]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2006, 24(1): 216.

[69] NAKAMURA T, YAMAMOTO A. Multi-finger electrostatic passive haptic feedback on a visual display[C/OL]//2013 World Haptics Conference, WHC 2013. IEEE, 2013: 37-42. DOI:10.1109/WHC.2013.6548381.

[70] MEYER D J, PESHKIN M A, COLGATE J E. Fingertip friction modulation due to electrostatic attraction[C/OL]//2013 World Haptics Conference (WHC). 2013: 43-48. DOI:10.1109/WHC.2013.6548382.

[71] VEZZOLI E, AMBERG M, LEMAIRE-SEMAIL B, et al. Electrovibration Modeling Analysis[C]//International Conference on Human Haptic Sensing and Touch Enabled Computer Applications. 2014: 369-376.

[72] QIN S, MCTEER A. Wafer dependence of Johnsen-Rahbek type electrostatic chuck for semiconductor processes[J/OL]. Journal of Applied Physics, 2007, 102(6).

[73] DAVIDSON J R, KREBS H I. An Electrorheological Fluid Actuator for Rehabilitation Robotics[J/OL]. IEEE/ASME Transactions on Mechatronics, 2018, 23(5): 2158-2167.

[74] RAHMAN M, ONG Z C, JULAI S, et al. A review of advances in magnetorheological dampers : their design optimization and applications[J]. Journal of Zhejiang University-Science A, 2017, 18(12): 991-1010

所在学位评定分委会
力学与航空航天工程系
国内图书分类号
TP242
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335926
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
梁轩铨. 基于静电吸附的可控变阻尼器的设计与控制方法研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930624-梁轩铨-机械与能源工程(5792KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[梁轩铨]的文章
百度学术
百度学术中相似的文章
[梁轩铨]的文章
必应学术
必应学术中相似的文章
[梁轩铨]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。