[1] 楼东,谷树忠,钟赛香.中国海洋资源现状及海洋产业发展趋势分析[J].资源科学,2005(05):20-26.
[2] 冯正平.国外自治水下机器人发展现状综述[J].鱼雷技术,2005(01):5-9.
[3] 封锡盛,刘永宽.自治水下机器人研究开发的现状和趋势[J].高技术通讯,1999(09):55-59+51.
[4] MOHAN S, KIM J. Indirect adaptive control of an autonomous underwater vehicle-manipulator system for underwater manipulation tasks [J]. Ocean Engineering, 2012, 54.
[5] 王迪. 水下机器人双目视觉测距与机械手视觉伺服控制研究[D].哈尔滨工程大学,2015.
[6] 常宗瑜,张扬,郑方圆,郑中强,王吉亮.水下机器人-机械手系统研究进展:结构、建模与控制[J].机械工程学报,2020,56(19):53-69.
[7] SIVČEV S, COLEMAN J, OMERDIĆ E, et al. Underwater manipulators: A review [J]. Ocean Engineering, 2018, 163.
[8] ZHOU JS, CHEN XJ, LI J, et al. A soft robotic approach to robust and dexterous grasping; proceedings of the 2018 IEEE International Conference on Soft Robotics (RoboSoft), F 24-28 April 2018, 2018 [C].
[9] 刘宇豪. 水下机器人-双臂机械手系统作业技术研究 [D]; 华中科技大学, 2020.
[10] ZHONG H, SHEN Z, ZHAO Y, et al. A Hybrid Underwater Manipulator System With Intuitive Muscle-Level sEMG Mapping Control [J]. IEEE Robotics and Automation Letters, 2020, 5(2).
[11] 贾丙西,刘山,张凯祥,陈剑.机器人视觉伺服研究进展:视觉系统与控制策略[J].自动化学报,2015,41(05):861-873.DOI:10.16383/j.aas.2015.c140724.
[12] 贾云得.机器视觉.北京:科学出版社,2002
[13] 邓泽军.基于双目立体视觉的水下立体匹配技术[D].浙江大学,2020. DOI:10.27461/d.cnki.gzjdx.2020.000734.
[14] KäLLSTRöM C G. Guidance and control of ocean vehicles [J]. Automatica, 1996, 32(8).
[15] CHOI S K, YUH J, KEEVIL N. Design of omni-directional underwater robotic vehicle[C].Oceans, 1993-11-18, 1993:I192-I197.
[16] CHOI H T, HANAI A, CHOI S K, et al. Development of an underwater robot, ODIN-III[C]. IEEE International Conference on Intelligent Robots and Systems, 2003: 836-841.
[17] DO K D, JIANG Z-P, PAN J, et al. A global output-feedback controller for stabilization and tracking of underactuated ODIN: A spherical underwater vehicle [J]. Automatica, 2004, 40(1): 117-124.
[18] WANG H H, ROCK S M, LEE M J. OTTER: The design and development of an intelligent underwater robot[J]. Auton Robots, 1996, 3(2-3): 297-320.
[19] DE WIT C C, DIAZ E O, PERRIER M. Robust nonlinear control of an underwater vehicle/manipulator system with composite dynamics[C]//IEEE International Conference on Robotics and Automation.1998.Proceedings.2000:452-457.
[20] EVANS, REDMOND, PLAKAS, et al. Autonomous docking for Intervention-AUVs using sonar and video-based real-time 3D pose estimation[C]//Oceans. 2003: 2201-2210.
[21] MARANI G, CHOI S K, YUH J. Underwater autonomous manipulation for intervention missions AUVs [J]. Ocean Engineering, 2008, 36(1).
[22] MAURELLI F, CAMERAS M, SALVI J, et al. The PANDORA project: A success story in AUV autonomy[C]. oceans conference, 2016: 1一8.
[23] KHATIB O, YEH X, BRANTNER G, et al. Ocean One: A Robotic Avatar for Oceanic Discovery [J]. IEEE Robot Automat Mag, 2016, 23(4).
[24] 张奇峰,张艾群. 自治水下机器人机械手系统协调运动研究田.海洋工程,2006(03):79一84.
[25] 李延富,张奇峰,封锡盛. 基于模糊推理水下作业系统运动控制研究[J].微计算机信息,2009,25(25):12-14.
[26] 张奇峰,唐元贵,李强,张艾群. 水下机器人-机械手系统构建与研究[J].海洋技术,2007(01):10-1_5.
[27] 公丕亮,张奇峰,李一平,张艾群. 基于视觉的UVMS单路标定位误差分析[J].计算机仿真,2010,27(10):144-147+159.
[28] 杨超,张铭钧,秦洪德,等.水下机器人-机械手姿态调节系统研究[J].哈尔滨工程大学学报.2018. 39 (2):377-383 .
[29] 彭生全.水下机器人-机械乎系统运动规划与控制技术研究[D].哈尔滨:哈尔滨上程大学,2012.
[30] WANG, YY, GU, et al. Practical Tracking Control of Robot Manipulators With Continuous Fractional-Order Nonsingular Terminal Sliding Mode [J]. IEEE Transactions on Industrial Electronics, 2016, 63(10).
[31] 王尧尧. 自治水下运载器—机械手系统协调控制研究[D].浙江大学,2016.
[32] 崔维成.“蛟龙”号载人潜水器关键技术研究与自主创新田.船舶与海洋工程,2012(01):1-8.
[33] 刘峰, 崔维成, 李向阳.中国首台深海载人潜水器一一蛟龙号[J].中国科学:地球科学,2010,40(12):1617-1620.
[34] 闫继宏,石培沛,张新彬,赵杰.软体机械臂仿生机理、驱动及建模控制研究发展综述[J].机械工程学报,2018,54(15):1-14.
[35] 芦雨轩. 气动软体机械臂动力学建模与控制方法研究 [D]; 南京邮电大学, 2021.
[36] Festo仿生家族——从飞狐到手臂[J].智能制造,2018(11):30-36.
[37] MARCHESE A D, KATZSCHMANN R K, RUS D. Whole arm planning for a soft and highly compliant 2d robotic manipulator[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2014: 554-560.
[38] MARCHESE A D, RUS D. Design, kinematics, and control of a soft spatial fluidic elastomer manipulator [J]. The International Journal of Robotics Research, 2016, 35(7): 840-869.
[39] COSIMO D S, K. K R, ANTONIO B, et al. Hierarchical control of soft manipulators towards unstructured interactions [J]. The International Journal of Robotics Research, 2021, 40(1).
[40] JIANG H, WANG Z, LIU X, et al. A two-level approach for solving the inverse kinematics of an extensible soft arm considering viscoelastic behavior[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 6127-6133.
[41] GONG Z, FANG X, CHEN X, et al. A soft manipulator for efficient delicate grasping in shallow water: Modeling, control, and real-world experiments [J]. The International Journal of Robotics Research, 2020, 40(1): 449-69.
[42] 李雨时. 基于双目立体视觉的水下定位方法研究[D].哈尔滨工程大学,2018.
[43] WANG HH, ROCK S M, LEES M J. Experiments in automatic retrieval of underwater objects with an AUV[C]//'Challenges of Our Changing Global Environment'. Conference Proceedings. OCEANS'95 MTS/IEEE. IEEE, 1995, 1: 366-373.
[44] BREIVIK G M, FJERDINGEN S A, SKOTHEIM Ø. Robust pipeline localization for an autonomous underwater vehicle using stereo vision and echo sounder data[C]//Intelligent Robots and Computer Vision XXVII: Algorithms and Techniques. SPIE, 2010, 7539: 102-113.
[45] QIN T, LI P, SHEN S. Vins-mono: A robust and versatile monocular visual-inertial state estimator [J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020.
[46] ZHANG Z. A flexible new technique for camera calibration [J]. IEEE Transactions on pattern analysis and machine intelligence, 2000, 22(11):1330-1334.
[47] GÓMEZ D, LOPEZ A, TOMBÉ J, et al. Design of a sliding mode control for an autonomous underwater vehicle[C]//2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA). IEEE, 2020: 1-6.
[48] ZOU Y, ZHENG Z. A robust adaptive RBFNN augmenting backstepping control approach for a model scaled helicopter [J]. IEEE Transactions on Control Systems Technology. 2015, 23(6): 2344-2352.
[49] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2): 91-110.
[50] VO A T, KANG H J, NGUYEN V C. An output feedback tracking control based on neural sliding mode and high order sliding mode observer[C]//2017 10th International Conference on Human System Interactions (HSI). IEEE, 2017: 161-165.
[51] CHAVEZ A G, RANIERI A, CHIARELLA D, et al. Underwater Vision-Based Gesture Recognition: A Robustness Validation for Safe Human–Robot Interaction [J]. IEEE Robotics & Automation Magazine, 2021, 28(3): 67-78.
[52] WEI Y, HAN P, LIU F, et al. Enhancement of underwater vision by fully exploiting the polarization information from the Stokes vector [J]. Optics Express, 2021, 29(14): 22275-22287.
[53] 薛乃耀. 作业型水下机器人运动控制系统研究[D].华南理工大学,2020.
[54] 姜雪菲. 双目立体视觉SLAM研究[D].北京交通大学,2014.
[55] 王德海. 基于双目立体视觉的目标识别与抓取定位[D].吉林大学,2016.
[56] 高雅昆. 水下图像质量增强与立体匹配算法研究[D].燕山大学,2019.
[57] 李雨时. 基于双目立体视觉的水下定位方法研究[D].哈尔滨工程大学,2018.
[58] 李煊. 基于双目视觉的水下目标图像处理与定位技术研究[D].哈尔滨工程大学,2018.
[59] 戴波. 基于机器视觉和惯性导航的移动机器人室内定位技术研究[D].北京交通大学,2021.
[60] 俞晓瑾. 柔性机械臂的运动学和动力学建模及视觉伺服控制[D].上海交通大学,2013.
[61] 高翔.视觉SLAM十四讲: 从理论到实践[M]. 北京: 电子工业出版社, 2017.
[62] 高翔.视觉SLAM十四讲: 从理论到实践.第2版[M].北京: 电子工业出版社,2019.
修改评论