中文版 | English
题名

基于静电纺丝选择性沉积PVDF-TrFE的柔性压电传感器阵列

其他题名
FLEXIBLE PIEZOELECTRIC SENSOR ARRAY BASED ON SELECTIVE DEPOSITION OF ELECTROSPUN PVDF-TRFE
姓名
姓名拼音
ZHOU Bin
学号
11930348
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
王敏
导师单位
深港微电子学院
论文答辩日期
2022-05-14
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  近年来,柔性压电式压力传感器以其自供电的优势在可穿戴电子设备中引起广泛关注。目前的研究多集中在通过提高材料性能或使用结构的调整以增加压电响应,而较少地考虑大面积、高分辨率的阵列化应用。传统的旋涂刮涂等方法制备的薄膜需要经过拉伸和电极化才具备压电性能,容易造成电击穿和薄膜损坏。同时,在大面积的压电阵列中,需要复杂耗时的光刻过程,阵列的大小也强烈依赖于晶圆和掩模版尺寸。此外,随着分辨率的提高,相邻敏感元容易受到临近压电单元的串扰。

  针对此问题,本文采用分立压电单元设计,利用选择性静电纺丝沉积纳米纤维,通过有限元仿真对纺丝过程中的电场进行模拟验证了其可行性。随后将制备得到的凸形压电单元图案薄膜作为压电功能层,使得所有压电单元相互机械隔离。仿真验证了该分立压电单元设计能有效地减少压电薄膜变形过程中的串扰。

  根据仿真结果以压电材料PVDF-TrFE(聚偏氟乙烯-三氟乙烯)为对象,通过集电器结构设计,探索最佳纺丝工艺以实现具有良好的图案化的纳米纤维薄膜。成功制备了一种无需光刻的压电传感器阵列。该压电敏感层不需要进行额外的极化,有效避免了薄膜破坏损伤。实验测试证明制成的传感器具有宽线性区域(0-40 N)、良好的线性度(2.5 mV/kPa)和耐用性(超过 25000 次),并且分立的凸形压电单元具有良好的的抗串扰能力。

  利用双轴步进电机移动收集器可以轻松获得大面积、高分辨率的压电传感阵列,制造过程快速且易于大规模生产。对于一个N × M传感器阵列,该传感器只需要利用N + M根导线,分别检测各通道对地的电势差变化就可以得到施力物体的运动信息。考虑到材料的热释电效应,我们针对温度剧烈变化对器件的影响进行了探讨。此外,我们成功地展示了准确的轨迹识别,以确认无串扰传感器阵列的适用性。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] SONG Y, MUKASA D, ZHANG H, et al. Self-Powered Wearable Biosensors[J]. Accounts of Materials Research, 2021, 2(3): 184-197.
[2] MONDAL S, ZEHRA N, CHOUDHURY A, et al. Wearable Sensing Devices for Point of Care Diagnostics[J]. ACS Applied Bio Materials, 2020, 4(1): 47-70.
[3] ZHANG C, FAN W, WANG S, et al. Recent Progress of Wearable Piezoelectric Nanogenerators[J]. ACS Applied Electronic Materials, 2021, 3(6): 2449-2467.
[4] YANG T, PAN H, TIAN G, et al. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics[J]. Nano Energy, 2020, 72: 104706.
[5] WANG G, LIU T, SUN X-C, et al. Flexible pressure sensor based on PVDF nanofiber[J]. Sensors and Actuators A: Physical, 2018, 280: 319-325.
[6] LING Y, AN T, YAP L W, et al. Disruptive, soft, wearable sensors[J]. Advanced Materials, 2020, 32(18): 1904664.
[7] XING-YU H, CHUAN-FEI G. Sensing mechanisms and applications of flexible pressure sensors[J]. Acta Physica Sinica, 2020, 69(17): 20200987.
[8] PIERRE CLAVER U, ZHAO G. Recent progress in flexible pressure sensors based electronic skin[J]. Advanced Engineering Materials, 2021, 23(5): 2001187.
[9] QIN J, YIN L J, HAO Y N, et al. Flexible and stretchable capacitive sensors with different microstructures[J]. Advanced Materials, 2021, 33(34): 2008267.
[10] SURMENEV R A, ORLOVA T, CHERNOZEM R V, et al. Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: A review[J]. Nano Energy, 2019, 62: 475-506.
[11] CHEN H, SONG Y, CHENG X, et al. Self-powered electronic skin based on the triboelectric generator[J]. Nano Energy, 2019, 56: 252-268.
[12] HE J, GUO X, YU J, et al. A high-resolution flexible sensor array based on PZT nanofibers[J]. Nanotechnology, 2020, 31(15): 155503.
[13] CHEN X, SHAO J, TIAN H, et al. Flexible three-axial tactile sensors with microstructure-enhanced piezoelectric effect and specially-arranged piezoelectric arrays[J]. Smart Materials and Structures, 2018, 27(2): 025018.
[14] LU K, HUANG W, GUO J, et al. Ultra-sensitive strain sensor based on flexible poly (vinylidene fluoride) piezoelectric film[J]. Nanoscale research letters, 2018, 13(1): 1-6.
[15] TIEN N T, JEON S, KIM D I, et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature[J]. Advanced Materials, 2014, 26(5): 796-804.
[16] CHEN X, SHAO J, TIAN H, et al. Scalable Imprinting of Flexible Multiplexed Sensor Arrays with Distributed Piezoelectricity‐Enhanced Micropillars for Dynamic Tactile Sensing[J]. Advanced Materials Technologies, 2020, 5(7): 2000046.
[17] BAE K, JEONG J, CHOI J, et al. Large-Area, Crosstalk-Free, Flexible Tactile Sensor Matrix Pixelated by Mesh Layers[J]. ACS Appl Mater Interfaces, 2021, 13(10): 12259-12267.
[18] TSIKRITEAS Z M, ROSCOW J I, BOWEN C R, et al. Flexible ferroelectric wearable devices for medical applications[J]. Iscience, 2021, 24(1): 101987.
[19] MO X, ZHOU H, LI W, et al. Piezoelectrets for wearable energy harvesters and sensors[J]. Nano Energy, 2019, 65: 104033.
[20] 杨叶. 基于PVDF的柔性压力传感器的制备及性能研究[D]. 电子科技大学, 2020.
[21] 梁雅楠. 柔性压电纳米发电机阵列及其接口电路研究[D]. 西安电子科技大学, 2020.
[22] 寻之宇. 一种压电式旋转运动执行器的设计建模与工艺研究[D]. 上海交通大学, 2018.
[23] 陈婷. 基于PVDF的触力传感器阵列[D]. 电子科技大学, 2021.
[24] Šutka A, Sherrell P C, Shepelin N A, et al. Measuring piezoelectric output—fact or friction?[J]. Advanced Materials, 2020, 32(32): 2002979.
[25] 费立勋. PVDF-TrFE共聚物薄膜的压电特性优化研究[D]. 电子科技大学, 2019.
[26] 刘帅. 基于PVDF及其共混体系的柔性压电传感器的设计与制备[D]. 电子科技大学, 2020.
[27] SHEPELIN N A, GLUSHENKOV A M, LUSSINI V C, et al. New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting[J]. Energy & Environmental Science, 2019, 12(4): 1143-1176.
[28] LIANG R, WANG Q-M. High sensitivity piezoelectric sensors using flexible PZT thick-film for shock tube pressure testing[J]. Sensors and Actuators A: Physical, 2015, 235: 317-327.
[29] YAN J, LIU M, JEONG Y G, et al. Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting[J]. Nano Energy, 2019, 56: 662-692.
[30] TAYLOR G I. Electrically driven jets[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1969, 313(1515): 453-475.
[31] HE Z, RAULT F, LEWANDOWSKI M, et al. Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the β phase and crystallinity enhancement[J]. Polymers, 2021, 13(2): 174.
[32] 库志喻. 基于近场电纺直写的微纳3D打印平台搭建及其图案精确沉积性能研究[D]. 深圳大学, 2017.
[33] 郭坤. 电纺阵列化纤维及复合纳米纤维膜的压电特性[D]. 青岛大学, 2020.
[34] 刘杰. PVDF基共聚物介电、光电和挠曲电性能的研究[D]. 中国科学技术大学, 2020.
[35] CALAVALLE F, ZACCARIA M, SELLERI G, et al. Piezoelectric and Electrostatic Properties of Electrospun PVDF‐TrFE Nanofibers and their Role in Electromechanical Transduction in Nanogenerators and Strain Sensors[J]. Macromolecular Materials and Engineering, 2020, 305(7): 2000162.
[36] NAZEMI M M, KHODABANDEH A, HADJIZADEH A. Near-Field Electrospinning: Crucial Parameters, Challenges, and Applications[J]. ACS Appl Bio Mater, 2022, 5(2): 394-412.
[37] HE X-X, ZHENG J, YU G-F, et al. Near-Field Electrospinning: Progress and Applications[J]. The Journal of Physical Chemistry C, 2017, 121(16): 8663-8678.
[38] LI C, LUO W, LIU X, et al. PMN-PT/PVDF Nanocomposite for high output nanogenerator applications[J]. Nanomaterials, 2016, 6(4): 67.
[39] SIDDIQUI S, KIM D-I, DUY L T, et al. High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage[J]. Nano Energy, 2015, 15: 177-185.
[40] SUN H, TIAN H, YANG Y, et al. A novel flexible nanogenerator made of ZnO nanoparticles and multiwall carbon nanotube[J]. Nanoscale, 2013, 5(13): 6117-6123.
[41] RENDL C, GREINDL P, HALLER M, et al. PyzoFlex: Printed piezoelectric pressure sensing foil; proceedings of the Proceedings of the 25th annual ACM symposium on User interface software and technology, F, 2012 [C].
[42] LIN W, WANG B, PENG G, et al. Skin‐Inspired Piezoelectric Tactile Sensor Array with Crosstalk‐Free Row+ Column Electrodes for Spatiotemporally Distinguishing Diverse Stimuli[J]. Advanced Science, 2021, 8(3): 2002817.
[43] CHORTOS A, BAO Z. Skin-inspired electronic devices[J]. Materials Today, 2014, 17(7): 321-331.
[44] KIM M G, LEE B, LI M, et al. All-Soft Supercapacitors Based on Liquid Metal Electrodes with Integrated Functionalized Carbon Nanotubes[J]. ACS Nano, 2020, 14(5): 5659-5667.
[45] Li D, Wang Y, Xia Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J]. Nano letters, 2003, 3(8): 1167-1171.
[46] PARK S M, EOM S, CHOI D, et al. Direct fabrication of spatially patterned or aligned electrospun nanofiber mats on dielectric polymer surfaces[J]. Chemical Engineering Journal, 2018, 335: 712-719.
[47] WANG S, SHAO H Q, LIU Y, et al. Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor[J]. Composites Science and Technology, 2021, 202: 108600
[48] HU X, DING Z, FEI L, et al. Wearable piezoelectric nanogenerators based on reduced graphene oxide and in situ polarization-enhanced PVDF-TrFE films[J]. Journal of Materials Science, 2019, 54(8): 6401-6409.
[49] Liu Q, Wang X X, Song W Z, et al. Wireless single-electrode self-powered piezoelectric sensor for monitoring[J]. ACS applied materials & interfaces, 2020, 12(7): 8288-8295.
[50] 柯万雨. 表面光栅结构对P(VDF-TrFE)薄膜压电性能的增强效应研究[D]. 苏州大学, 2020.
[51] YE S, CHENG C, CHEN X, et al. High-performance piezoelectric nanogenerator based on microstructured P(VDF-TrFE)/BNNTs composite for energy harvesting and radiation protection in space[J]. Nano Energy, 2019, 60: 701-714.
[52] MAO-LIANG S, YAN Z. Flexible sensor and energy storage device based on piezoelectric nanogenerator[J]. Acta Physica Sinica, 2020, 69(17): 20200784.
[53] KARAN S K, BERA R, PARIA S, et al. An approach to design highly durable piezoelectric nanogenerator based on self‐poled PVDF/AlO‐rGO flexible nanocomposite with high power density and energy conversion efficiency[J]. Advanced Energy Materials, 2016, 6(20): 1601016.
[54] KIM H J, KIM J H, JUN K W, et al. Silk nanofiber‐networked bio‐triboelectric generator: silk bio‐TEG[J]. Advanced Energy Materials, 2016, 6(8): 1502329.
[55] YANG R, QIN Y, LI C, et al. Characteristics of output voltage and current of integrated nanogenerators[J]. Applied Physics Letters, 2009, 94(2): 022905.
[56] Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin[J]. Nature materials, 2016, 15(9): 937-950.
[57] KALIMULDINA G, TURDAKYN N, ABAY I, et al. A review of piezoelectric PVDF film by electrospinning and its applications[J]. Sensors, 2020, 20(18): 5214.
[58] WANG X, SUN F, YIN G, et al. Tactile-sensing based on flexible PVDF nanofibers via electrospinning: A review[J]. Sensors, 2018, 18(2): 330.
[59] Guo H, Wan J, Wu H, et al. Self-powered multifunctional electronic skin for a smart anti-counterfeiting signature system[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 22357-22364.
[60] LI J, ZHAO C, XIA K, et al. Enhanced piezoelectric output of the PVDF-TrFE/ZnO flexible piezoelectric nanogenerator by surface modification[J]. Applied Surface Science, 2019, 463: 626-634.
[61] HAN J, LI D, ZHAO C, et al. Highly sensitive impact sensor based on PVDF-TrFE/Nano-ZnO composite thin film[J]. Sensors, 2019, 19(4): 830.
[62] YUAN X, GAO X, SHEN X, et al. A 3D-printed, alternatively tilt-polarized PVDF-TrFE polymer with enhanced piezoelectric effect for self-powered sensor application[J]. Nano Energy, 2021, 85: 105985.
[63] Boutry C M, Nguyen A, Lawal Q O, et al. A sensitive and biodegradable pressure sensor array for cardiovascular monitoring[J]. Advanced Materials, 2015, 27(43): 6954-6961.
[64] SARWAR M S, DOBASHI Y, PRESTON C, et al. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array[J]. Science advances, 2017, 3(3): e1602200.
[65] PAN L, CHORTOS A, YU G, et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film[J]. Nature communications, 2014, 5(1): 1-8.
[66] SUEN M-S, LIN Y-C, CHEN R. A flexible multifunctional tactile sensor using interlocked zinc oxide nanorod arrays for artificial electronic skin[J]. Sensors and Actuators A: Physical, 2018, 269: 574-584.
[67] PARK J, LEE Y, HONG J, et al. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures[J]. ACS nano, 2014, 8(12): 12020-12029.
[68] DENG C, TANG W, Liu L, et al. Self‐powered insole plantar pressure mapping system[J]. Advanced Functional Materials, 2018, 28(29): 1801606.
[69] HA M, LIM S, CHO S, et al. Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors[J]. ACS Nano, 2018, 12(4): 3964-3974.
[70] ZHOU K, ZHAO Y, SUN X, et al. Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing[J]. Nano Energy, 2020, 70: 104546.
[71] ZHAO G, ZHANG Y, SHI N, et al. Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing[J]. Nano Energy, 2019, 59: 302-310.
[72] Yang Y, Zhang H, Lin Z H, et al. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system[J]. ACS nano, 2013, 7(10): 9213-9222.
[73] BA Y Y, BAO J F, WANG Z Y, et al. Self-powered trajectory-tracking microsystem based on electrode-miniaturized triboelectric nanogenerator[J]. Nano Energy, 2021, 82: 105730.

所在学位评定分委会
力学与航空航天工程系
国内图书分类号
TB332
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335929
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
周斌. 基于静电纺丝选择性沉积PVDF-TrFE的柔性压电传感器阵列[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930348-周斌-力学与航空航天工(7265KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周斌]的文章
百度学术
百度学术中相似的文章
[周斌]的文章
必应学术
必应学术中相似的文章
[周斌]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。