中文版 | English
题名

机器人及测量系统的模式辨识与补偿

其他题名
IDENTIFICATION AND COMPENSATION OF ROBOTS AND MEASURING SYSTEM
姓名
姓名拼音
WU Lei
学号
11930337
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
周利民
导师单位
系统设计与智能制造学院
论文答辩日期
2022-05-12
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

现今,工业机器人已经被广泛用于汽车制造、医疗等行业,离线编程等技术出
现,要求机器人具有高的绝对定位精度,就需要对机器人进行标定。针对目前用于
工业机器人标定的测量设备成本高、标定算法精度一般等难题,本文推导开发了
使用一维长度的标定算法,并且以拉线编码器为传感器搭建了相适应的测量系统,
整体上形成了一套低成本、高效率的标定系统。全文的主要研究内容如下:
(1)以李群HL6 型号机器人作为建模对象,建立了机器人运动学误差模型。该
运动学误差模型包含伴随变换误差模型,把机器人末端执行器到测量工具间的一
维长度量作为测量输入,为测量系统的设计开发作出良好铺垫。
(2)分析了误差模型中运动学几何参数的可辨识性和可观测性。通过对矩阵
分析剔除运动学几何参数中的冗余参数,借助于OI 指数和DETMAX 算法使得运
动学几何参数的可观测性变好,提高标定算法精度,及测试算法对测量误差的敏
感性。
(3)以拉线编码器为测量传感器设计开发了一款测量系统。从传感器本身、测
量几何模型和装置结构三方面去分析测量系统误差,并对其进行补偿,提高测量
系统精度。
(4)对标定算法和测量系统进行了实验。运用MATLAB 软件进行仿真实验,
分析算法在含有真实测量误差情况下的辨识精度;使用激光跟踪仪和开发的测量
系统对李群机器人进行了标定实验。
关键词:工业机器人;运动学标定;误差分析;测量;拉线编码器

其他摘要

Industrial robots have been widely used in automobile manufacturing, medical and
other industries.Offline programming technology and various highprecision
scenarios
ask for higher absolute positioning accuracy of robots, so they need to be calibrated. Due
to the high cost of the measurement equipments used for industrial robots calibration
and the general accuracy of the calibration algorithm, the paper developed a calibration
algorithm using onedimensional
length, and built a suitable measurement system with
the drawwird
encoder. They made up a set of lowcost,
highefficiency
robot calibration
system.The following is the main contents of this paper:
(1) Taking QKM HL6 robot as an example, the kinematic error model of the robot
was derived through the adjoint transformation error model.It only needs to take the onedimensional
length as inputs, which is the distance between the robot TCP and the measuring
tool. It has made a good foundation for the design and development of the measurement
system.
(2) The paper analyzed identifiability and observability of the kinematic geometric
parameters in the error model.The redundant parameters in the kinematic geometric parameters
were eliminated by the matrix analysis, and the observability of the kinematic
geometric parameters was better with the help of the OI indexs and the DETMAX algorithm.
Better observability improved the accuracy of the calibration algorithm. The
sensitivity of the algorithm to the measurement error is analyzed.
(3) A measurement system is designed and developed with the drawwire
encoder as
the measurement sensor.the measurement system errors were analyzed from the sensor,
the measurement geometry model and the device structure and compensated to improve
the accuracy of the measurement system.
(4) The calibration algorithm and measurement system were proved by experiments.
the identification accuracy of the algorithm was calculated by simulation experiment with
real measurement errors in MATLAB software. Robot calibration experiment was done
to calculated accuracy of the algorithm by using the laser tracker.Finally, robot calibration
experiment was done to calculated robot calibration system by using the measuring
system.

Keywords: Industrial robots; kinematic calibration; measuring systems; error anlysis;
draw wire encoder

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06-30
参考文献列表

[1] 吴锦辉, 陶友瑞. 工业机器人定位精度可靠性研究现状综述[J]. 中国机械工程, 2020, 31 (18): 9.
[2] NUBIOLA A, BONEV I A. Absolute calibration of an ABB IRB 1600 robot using a lasertracker[J]. Robotics and ComputerIntegrated Manufacturing, 2013, 29(1): 236245.
[3] JUDD R, KNASINSKI A. A technique to calibrate industrial robots with experimental verification[C]//Proceedings. 1987 IEEE International Conference on Robotics and Automation: volume 4. IEEE, 1987: 351357.
[4] 朱煜. 基于拉线编码器的测量系统与机器人标定算法研究与应用[D]. 南京航空航天大学, 2018.
[5] BI S, LIANG J. Robotic drilling system for titanium structures[J]. The international journal of advanced manufacturing technology, 2011, 54(5): 767774.
[6] 杜亮. 六自由度工业机器人定位误差参数辨识及补偿方法的研究[D]. 华南理工大学.
[7] 李明富, 马建华, 张玉彦. 基于机器人的空间坐标测量技术研究现状及发展趋势[J]. 机械科学与技术, 2014, 33(12): 8.
[8] 吴剑锋, 王文, 陈子辰. 激光三角法测量误差分析与精度提高研究[J]. 机电工程, 2003, 20 (5): 3.
[9] ZHAN Y. Development of a wire draw encoder based measurement system for robot calibration [D]. 2015.
[10] MOORING B W, ROTH Z S, DRIELS M R. Fundamentals of manipulator calibration[M]. Wileyinterscience, 1991.
[11] SCHRÖER K, ALBRIGHT S L, GRETHLEIN M. Complete, minimal and modelcontinuous kinematic models for robot calibration[J]. Robotics and ComputerIntegrated Manufacturing, 1997, 13(1): 7385.
[12] DENAVIT J, HARTENBERG R S. A kinematic notation for lowerpair mechanisms based on matrices[M]. American Society of Mechanical Engineers, 1955.
[13] PAUL R P. Robot manipulators: mathematics, programming, and control: the computer control of robot manipulators[M]. Richard Paul, 1981.
[14] HAYATI S A. Robot arm geometric link parameter estimation[C]//The 22nd IEEE Conference on Decision and Control. IEEE, 1983: 14771483.
[15] HAYATI S, MIRMIRANI M. Improving the absolute positioning accuracy of robot manipulators[ J]. Journal of robotic systems, 1985, 2(4): 397413.
[16] HAYATI S, TSO K, ROSTON G. Robot geometry calibration[C]//Proceedings. 1988 IEEE International Conference on Robotics and Automation. IEEE, 1988: 947951.
[17] ZHUANG H, ROTH Z S. A note on singularities of the MCPC model[J]. Robotics and Computerintegrated manufacturing, 1996, 12(2): 169171.
[18] ZHUANG H, ROTH Z S, HAMANO F. A complete and parametrically continuous kinematic model for robot manipulators[C]//Proceedings., IEEE International Conference on Robotics and Automation. IEEE, 1990: 9297.
[19] ZHUANG H, ROTH Z S. A linear solution to the kinematic parameter identification of robot manipulators[J]. IEEE Transactions on Robotics and Automation, 1993, 9(2): 174185.
[20] OKAMURA K, PARK F C. Kinematic calibration using the product of exponentials formula [J]. Robotica, 1996, 14(4): 415421.
[21] WU L, YANG X, CHEN K, et al. A minimal POEbased model for robotic kinematic calibration with only position measurements[J]. IEEE Transactions on Automation Science and Engineering, 2014, 12(2): 758763.
[22] STONE H W, SANDERSON A C. Statistical performance evaluation of the Smodel arm signature identification technique[C]//Proceedings. 1988 IEEE International Conference on Robotics and Automation. IEEE, 1988: 939946.
[23] 李博文. 大型工业机器人自动化装配定位误差标定与补偿[D]. 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.
[24] WANG R, WU A, CHEN X, et al. A point and distance constraint based 6R robot calibration method through machine vision[J]. Robotics and ComputerIntegrated Manufacturing, 2020, 65: 101959.
[25] GAUDREAULT M, JOUBAIR A, BONEV I. Selfcalibration of an industrial robot using a novel affordable 3D measuring device[J]. Sensors, 2018, 18(10): 3380.
[26] 汪平平, 费业泰, 尚平, 等. 柔性坐标测量机参数辨识方法[J]. 农业机械学报, 2007, 38(7): 129132.
[27] MOTTA J M S, DE CARVALHO G C, MCMASTER R. Robot calibration using a 3D visionbased measurement system with a single camera[J]. Robotics and ComputerIntegrated Manufacturing, 2001, 17(6): 487497.
[28] BAI Y, ZHUANG H, ROTH Z S. Experiment study of PUMA robot calibration using a laser tracking system[C]//Proceedings of the 2003 IEEE International Workshop on Soft Computing in Industrial Applications, 2003. SMCia/03. IEEE, 2003: 139144.
[29] RIBEIRO F, MCMASTER R. A low cost cell calibration technique and its PC based control software[C]//ISIE’97 Proceeding of the IEEE International Symposium on Industrial Electronics. IEEE, 1997: 840845.
[30] LIU Y, XI N. Lowcost and automated calibration method for joint offset of industrial robot using singlepoint constraint[J]. Industrial Robot: An International Journal, 2011.
[31] DRIELS M R, SWAYZE W, POTTER S. Fullpose calibration of a robot manipulator using a Coordinatemeasuring machine[J]. The International Journal of Advanced Manufacturing Technology, 1993, 8(1): 3441.
[32] NUBIOLA A, BONEV I A. Absolute robot calibration with a single telescoping ballbar[J]. Precision Engineering, 2014, 38(3): 472480.
[33] 任永杰, 邾继贵, 杨学友, 等. 利用激光跟踪仪对机器人进行标定的方法[J]. 机械工程学报, 2007, 43(9): 6.
[34] NEWMAN W S, BIRKHIMER C E, HORNING R J, et al. Calibration of a Motoman P8 robot based on laser tracking[C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065): volume 4. IEEE, 2000: 35973602.
[35] 黎源. 面向工业机器人的拉线式运动学标定系统研究[Z].
[36] 张宏伟. 基于距离的工业机器人运动学标定及误差补偿[D]. 昆明理工大学, 2019.
[37] VEITSCHEGGER W K, WU C H. Robot calibration and compensation[J]. IEEE Journal on Robotics and Automation, 1988, 4(6): 643656.
[38] PUSKORIUS G, FELDKAMP L. Global calibration of a robot/vision system[C]//Proceedings. 1987 IEEE International Conference on Robotics and Automation: volume 4. IEEE, 1987: 190195.
[39] NGUYEN H N, ZHOU J, KANG H J, et al. Robot geometric parameter identification with extended Kalman filtering algorithm[C]//International Conference on Intelligent Computing. Springer, 2013: 165170.
[40] DOLINSKY J U, JENKINSON I, COLQUHOUN G J. Application of genetic programming to the calibration of industrial robots[J]. Computers in Industry, 2007, 58(3): 255264.
[41] RENDERS J M, ROSSIGNOL E, BECQUET M, et al. Kinematic calibration and geometrical parameter identification for robots.[J]. IEEE Transactions on robotics and automation, 1991, 7 (6): 721732.
[42] ZHUANG H, ROTH Z S, HAMANO F. Optimal design of robot accuracy compensators[J]. IEEE transactions on robotics and automation, 1993, 9(6): 854857.
[43] JANG J H, KIM S H, KWAK Y K. Calibration of geometric and nongeometric errors of an industrial robot[J]. Robotica, 2001, 19(3): 311321.
[44] WANG D, BAI Y, ZHAO J. Robot manipulator calibration using neural network and a camerabased measurement system[J]. Transactions of the Institute of Measurement and Control, 2012, 34(1): 105121.
[45] FRANASZEK M, MARVEL J A. Using Full Pose Measurement for Serial Robot Calibration [J]. Applied Sciences, 2022, 12(7): 3680.
[46] GAO T, MENG F, ZHANG X, et al. Operational kinematic parameter identification of industrial robots based on a motion capture system through the recurrence way[J]. Mechanism and Machine Theory, 2022, 172: 104795.
[47] KANA S, GURNANI J, RAMANATHAN V, et al. Fast Kinematic ReCalibration for Industrial Robot Arms[J]. Sensors, 2022, 22(6): 2295.
[48] SONG Y, LIU M, LIAN B, et al. Industrial serial robot calibration considering geometric and deformation errors[J]. Robotics and ComputerIntegrated Manufacturing, 2022, 76: 102328.
[49] 杨坤. 基于李代数的工业机器人误差建模, 参数辨识与误差补偿研究[D]. 华中科技大学, 2018.
[50] MURRAY R M, LI Z, SASTRY S S. A mathematical introduction to robotic manipulation[M]. CRC press, 2017.
[51] LI C, WU Y, LÖWE H, et al. POEbased robot kinematic calibration using axis configuration space and the adjoint error model[J]. IEEE Transactions on Robotics, 2016, 32(5): 12641279.
[52] SICILIANO B, KHATIB O, KRÖGER T. Springer handbook of robotics: volume 200[M]. Springer, 2008.
[53] JOUBAIR A, TAHAN A, BONEV I A. Performances of observability indices for industrial robot calibration[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 24772484.

所在学位评定分委会
系统设计与智能制造学院
国内图书分类号
TP242.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335930
专题工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
吴磊. 机器人及测量系统的模式辨识与补偿[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930337-吴磊-系统设计与智能制(7108KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴磊]的文章
百度学术
百度学术中相似的文章
[吴磊]的文章
必应学术
必应学术中相似的文章
[吴磊]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。