中文版 | English
题名

锂金属负极用修饰泡沫镍的制备及电化学性能研究

其他题名
Preparation and Electrochemical Properties of Modified Nickel Foam for Lithium Metal Anodes
姓名
姓名拼音
WANG Xin
学号
12032316
学位类型
硕士
学位专业
085601 材料工程
学科门类/专业学位类别
0856 材料与化工
导师
程春
导师单位
材料科学与工程系
论文答辩日期
2022-04-30
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  锂金属负极具有高比容量(3860 mAh g-1)和低还原电位(-3.04 V,对标准氢电极)等优势,是下一代可充放电池的理想负极材料。然而,锂金属负极存在枝晶生长和体积膨胀等问题,这些问题会导致负极容量在循环过程中衰减过快,严重削弱负极的库伦效率及电化学稳定性。

  为了解决上述问题,本工作通过水热处理结合等离子体增强化学气相沉积(PECVD)工艺,制备得到了一种碳包覆氢氧化镍纳米片修饰泡沫镍(C@Ni(OH)2-NF)材料应用于锂金属负极,并系统研究了C@Ni(OH)2-NF的锂沉积行为及其电化学性能。主要研究内容和结果如下:

  本工作系统研究了PECVD工艺中不同反应温度和沉积时间对C@Ni(OH)2-NF集流体形貌及性能的影响。经过筛选,反应温度300 ℃下,沉积时间40 min制得的C@Ni(OH)2-NF具有最优性能。在1 mA cm-2, 1 mAh cm-2条件的半电池测试中,最优条件的Li//C@Ni(OH)2-NF经过900圈稳定循环后仍可保持97.6%的高库伦效率。在全电池测试方面,C@Ni(OH)2-NF-Li//LiFePO4电池在1 C倍率下经过300次循环后容量保持在80%,展现出良好的实际应用价值。研究结果表明,纳米片阵列可有效降低负极电流密度,为锂金属提供充足的生长空间,并容纳其体积膨胀;碳和还原的镍颗粒具有良好的导电性,可提供快速的电子传输通道;氢氧化镍纳米片上的氟化镍能提供亲锂活性位点,促使锂金属实现均匀成核与沉积。

其他摘要

  Lithium metal anode with high specific capacity (3860 mAh g-1) and low reduction potential (-3.04 V, compared with standard hydrogen electrode) is regarded as the ideal anode material for the next generation of rechargeable cells. However, the problems of lithium anode, such as dendrite growth and volume expansion, lead to the rapid capacity decay during the cycling process, which seriously weakens the Coulombic efficiency and electrochemical stability.

  To solve the above problems, a carbon-coated nickel hydroxide nanosheet modified nickel foam (C@Ni(OH)2-NF) material was prepared by hydrothermal treatment combined with plasma-enhanced chemical vapor deposition (PECVD) process. It was applied to lithium metal anode, and lithium deposition behaviour and electrochemical performance on the C@Ni(OH)2-NF were systematically studied. The main research contents and results are as follows:

  In this work, the effects of different reaction temperatures and deposition time on the morphology and properties of the C@Ni(OH)2-NF current collector by the PECVD process were studied systematically. After optimization, the obtained C@Ni(OH)2-NF have the best performance, which were prepared at the reaction temperature of 300 and deposition time of 40 min. At a current density of 1 mA cm-2 with a capacity of 1 mAh cm-2, the Li//C@Ni(OH)2-NF half-cell can still maintain a high Coulombic efficiency of 97.6% after 900 cycles, exhibiting good cycling stability. In the full-cell test, the C@Ni(OH)2-NF-Li//LiFePO4 battery remained a capacity retention rate of 80% after 300 cycles at 1 C, showing good practical application value. These results show that the nanosheets can effectively reduce the current density, which can provide sufficient growth space for lithium metal and accommodate its volume expansion. Moreover, the carbon and reduced nickel nanoparticles with good electrical conductivity can provide fast electron transport channels. Finally, the fluorine-doped nickel hydroxide nanosheets can provide lithiophilic active sites and regulate uniform nucleation and deposition of lithium. 

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-6
参考文献列表

[1] TARASCON J M, ARMAND M. Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nature, 2001, 414(6861): 359-367.
[2] GOODENOUGH J B, PARK KS. The Li-Ion Rechargeable Battery: A Perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
[3] SCHMUCH R, WAGNER R, HöRPEL G, et al. Performance and Cost of Materials for Lithium-Based Rechargeable Automotive Batteries[J]. Nature Energy, 2018, 3(4): 267-278.
[4] CHENG XB, ZHANG R, ZHAO CZ, et al. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
[5] DUFFNER F, KRONEMEYER N, TüBKE J, et al. Post-Lithium-Ion Battery Cell Production and Its Compatibility with Lithium-Ion Cell Production Infrastructure[J]. Nature Energy, 2021, 6(2): 123-134.
[6] ZHANG H, LI C, ESHETU G G, et al. From Solid-Solution Electrodes and the Rocking-Chair Concept to Today's Batteries[J]. Angewandte Chemie International Edition, 2020, 59(2): 534-538.
[7] GUYOMARD D, TARASCON J M. Rechargeable Li1+XMn2O4/Carbon Cells with a New Electrolyte Composition: Potentiostatic Studies and Application to Practical Cells[J]. Journal of The Electrochemical Society, 1993, 140(11): 3071-3081.
[8] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries[J]. Journal of The Electrochemical Society, 1997, 144(4): 1188-1194.
[9] WU F, MAIER J, YU Y. Guidelines and Trends for Next-Generation Rechargeable Lithium and Lithium-Ion Batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614.
[10] CHOI J W, AURBACH D. Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities[J]. Nature Reviews Materials, 2016, 1(4): 16013.
[11] ZHANG JN, LI Q, OUYANG C, et al. Trace Doping of Multiple Elements Enables Stable Battery Cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4(7): 594-603.
[12] WU F, LI X, WANG Z, et al. Low-Temperature Synthesis of Nano-Micron Li4Ti5O12 by an Aqueous Mixing Technique and Its Excellent Electrochemical Performance[J]. Journal of Power Sources, 2012, 202: 374-379.
[13] CHAN M K Y, WOLVERTON C, GREELEY J P. First Principles Simulations of the Electrochemical Lithiation and Delithiation of Faceted Crystalline Silicon[J]. Journal of the American Chemical Society, 2012, 134(35): 14362-14374.
[14] WU H, JIA H, WANG C, et al. Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes[J]. Advanced Energy Materials, 2021, 11(5): 2003092.
[15] XU B, QIAN D, WANG Z, et al. Recent Progress in Cathode Materials Research for Advanced Lithium Ion Batteries[J]. Materials Science and Engineering: R: Reports, 2012, 73(5): 51-65.
[16] GUO Y, LI H, ZHAI T. Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries[J]. Advanced Materials, 2017, 29(29): 1700007.
[17] QIN K, HOLGUIN K, MOHAMMADIROUDBARI M, et al. Strategies in Structure and Electrolyte Design for High-Performance Lithium Metal Batteries[J]. Advanced Functional Materials, 2021, 31(15): 2009694.
[18] WANG H, YU D, KUANG C, et al. Alkali Metal Anodes for Rechargeable Batteries[J]. Chem, 2019, 5(2): 313-338.
[19] XU R, CHENG XB, YAN C, et al. Artificial Interphases for Highly Stable Lithium Metal Anode[J]. Matter, 2019, 1(2): 317-344.
[20] ZHANG X, WANG A, LIU X, et al. Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination[J]. Accounts of Chemical Research, 2019, 52(11): 3223-3232.
[21] ZOU P, SUI Y, ZHAN H, et al. Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields[J]. Chemical Reviews, 2021, 121(10): 5986-6056.
[22] WINN D A, SHEMILT J M, STEELE B C H. Titanium Disulphide: A Solid Solution Electrode for Sodium and Lithium[J]. Materials Research Bulletin, 1976, 11(5): 559-566.
[23] LIN D, LIU Y, CUI Y. Reviving the Lithium Metal Anode for High-Energy Batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206.
[24] LIU B, ZHANG JG, XU W. Advancing Lithium Metal Batteries[J]. Joule, 2018, 2(5): 833-845.
[25] BAI P, LI J, BRUSHETT F R, et al. Transition of Lithium Growth Mechanisms in Liquid Electrolytes[J]. Energy & Environmental Science, 2016, 9(10): 3221-3229.
[26] GUNNARSDóTTIR A B, AMANCHUKWU C V, MENKIN S, et al. Noninvasive in Situ Nmr Study of “Dead Lithium” Formation and Lithium Corrosion in Full-Cell Lithium Metal Batteries[J]. Journal of the American Chemical Society, 2020, 142(49): 20814-20827.
[27] LIU F, XU R, WU Y, et al. Dynamic Spatial Progression of Isolated Lithium During Battery Operations[J]. Nature, 2021, 600(7890): 659-663.
[28] LU D, SHAO Y, LOZANO T, et al. Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes[J]. Advanced Energy Materials, 2015, 5(3): 1400993.
[29] SANCHEZ A J, KAZYAK E, CHEN Y, et al. Plan-View Operando Video Microscopy of Li Metal Anodes: Identifying the Coupled Relationships among Nucleation, Morphology, and Reversibility[J]. ACS Energy Letters, 2020, 5(3): 994-1004.
[30] CHEN XR, ZHAO BC, YAN C, et al. Review on Li Deposition in Working Batteries: From Nucleation to Early Growth[J]. Advanced Materials, 2021, 33(8): 2004128.
[31] LI Y, LI Y, PEI A, et al. Atomic Structure of Sensitive Battery Materials and Interfaces Revealed by Cryo-Electron Microscopy[J]. Science, 2017, 358(6362): 506-510.
[32] WOOD K N, NOKED M, DASGUPTA N P. Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior[J]. ACS Energy Letters, 2017, 2(3): 664-672.
[33] PARK H, TAMWATTANA O, KIM J, et al. Probing Lithium Metals in Batteries by Advanced Characterization and Analysis Tools[J]. Advanced Energy Materials, 2021, 11(15): 2003039.
[34] LI Y, HUANG W, LI Y, et al. Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy[J]. Joule, 2018, 2(10): 2167-2177.
[35] FANG C, LI J, ZHANG M, et al. Quantifying Inactive Lithium in Lithium Metal Batteries[J]. Nature, 2019, 572(7770): 511-515.
[36] JIN C, LIU T, SHENG O, et al. Rejuvenating Dead Lithium Supply in Lithium Metal Anodes by Iodine Redox[J]. Nature Energy, 2021, 6(4): 378-387.
[37] ZHAI P, WANG T, JIANG H, et al. 3D Artificial Solid-Electrolyte Interphase for Lithium Metal Anodes Enabled by Insulator–Metal–Insulator Layered Heterostructures[J]. Advanced Materials, 2021, 33(13): 2006247.
[38] YE Y, ZHAO Y, ZHAO T, et al. An Antipulverization and High-Continuity Lithium Metal Anode for High-Energy Lithium Batteries[J]. Advanced Materials, 2021, 33(49): 2105029.
[39] LIANG X, PANG Q, KOCHETKOV I R, et al. A Facile Surface Chemistry Route to a Stabilized Lithium Metal Anode[J]. Nature Energy, 2017, 2(9): 17119.
[40] SHEN X, LI Y, QIAN T, et al. Lithium Anode Stable in Air for Low-Cost Fabrication of a Dendrite-Free Lithium Battery[J]. Nature Communications, 2019, 10(1): 900.
[41] GUO Y, NIU P, LIU Y, et al. An Autotransferable g-C3N4 Li+-Modulating Layer toward Stable Lithium Anodes[J]. Advanced Materials, 2019, 31(27): 1900342.
[42] CHANG S, JIN X, HE Q, et al. In Situ Formation of Polycyclic Aromatic Hydrocarbons as an Artificial Hybrid Layer for Lithium Metal Anodes[J]. Nano Letters, 2022, 22(1): 263-270.
[43] WANG G, CHEN C, CHEN Y, et al. Self-Stabilized and Strongly Adhesive Supramolecular Polymer Protective Layer Enables Ultrahigh-Rate and Large-Capacity Lithium-Metal Anode[J]. Angewandte Chemie International Edition, 2020, 59(5): 2055-2060.
[44] HUANG Z, CHOUDHURY S, PAUL N, et al. Effects of Polymer Coating Mechanics at Solid-Electrolyte Interphase for Stabilizing Lithium Metal Anodes[J]. Advanced Energy Materials, 2021, 12(5): 2103187.
[45] ZHAO Y, WANG D, GAO Y, et al. Stable Li Metal Anode by a Polyvinyl Alcohol Protection Layer via Modifying Solid-Electrolyte Interphase Layer[J]. Nano Energy, 2019, 64: 103893.
[46] LIU X, LIU J, QIAN T, et al. Novel Organophosphate-Derived Dual-Layered Interface Enabling Air-Stable and Dendrite-Free Lithium Metal Anode[J]. Advanced Materials, 2020, 32(2): 1902724.
[47] WANG J, YANG J, XIAO Q, et al. In Situ Self-Assembly of Ordered Organic/Inorganic Dual-Layered Interphase for Achieving Long-Life Dendrite-Free Li Metal Anodes in LiFSI-Based Electrolyte[J]. Advanced Functional Materials, 2021, 31(7): 2007434.
[48] TU Z, CHOUDHURY S, ZACHMAN M J, et al. Fast Ion Transport at Solid–Solid Interfaces in Hybrid Battery Anodes[J]. Nature Energy, 2018, 3(4): 310-316.
[49] HUANG Z, CHOUDHURY S, GONG H, et al. A Cation-Tethered Flowable Polymeric Interface for Enabling Stable Deposition of Metallic Lithium[J]. Journal of the American Chemical Society, 2020, 142(51): 21393-21403.
[50] GAO Y, YAN Z, GRAY J L, et al. Polymer-Inorganic Solid-Electrolyte Interphase for Stable Lithium Metal Batteries under Lean Electrolyte Conditions[J]. Nature Materials, 2019, 18(4): 384-389.
[51] REN W, ZHENG Y, CUI Z, et al. Recent Progress of Functional Separators in Dendrite Inhibition for Lithium Metal Batteries[J]. Energy Storage Materials, 2021, 35: 157-168.
[52] ZHANG M, PAN P, CHENG Z, et al. Flexible, Mechanically Robust, Solid-State Electrolyte Membrane with Conducting Oxide-Enhanced 3D Nanofiber Networks for Lithium Batteries[J]. Nano Letters, 2021, 21(16): 7070-7078.
[53] ZHOU Y, ZHANG X, DING Y, et al. Redistributing Li-Ion Flux by Parallelly Aligned Holey Nanosheets for Dendrite-Free Li Metal Anodes[J]. Advanced Materials, 2020, 32(38): 2003920.
[54] LI Z, PENG M, ZHOU X, et al. In Situ Chemical Lithiation Transforms Diamond-Like Carbon into an Ultrastrong Ion Conductor for Dendrite-Free Lithium-Metal Anodes[J]. Advanced Materials, 2021, 33(37): 2100793.
[55] LI C, LIU S, SHI C, et al. Two-Dimensional Molecular Brush-Functionalized Porous Bilayer Composite Separators toward Ultrastable High-Current Density Lithium Metal Anodes[J]. Nature Communications, 2019, 10(1): 1363.
[56] SONG YH, WU KJ, ZHANG TW, et al. A Nacre-Inspired Separator Coating for Impact-Tolerant Lithium Batteries[J]. Advanced Materials, 2019, 31(51): 1905711.
[57] TIKEKAR M D, CHOUDHURY S, TU Z, et al. Design Principles for Electrolytes and Interfaces for Stable Lithium-Metal Batteries[J]. Nature Energy, 2016, 1(9): 16114.
[58] YAMADA Y, WANG J, KO S, et al. Advances and Issues in Developing Salt-Concentrated Battery Electrolytes[J]. Nature Energy, 2019, 4(4): 269-280.
[59] YU Z, RUDNICKI P E, ZHANG Z, et al. Rational Solvent Molecule Tuning for High-Performance Lithium Metal Battery Electrolytes[J]. Nature Energy, 2022, 7(1): 94-106.
[60] YU Z, WANG H, KONG X, et al. Molecular Design for Electrolyte Solvents Enabling Energy-Dense and Long-Cycling Lithium Metal Batteries[J]. Nature Energy, 2020, 5(7): 526-533.
[61] MENG J, LEI M, LAI C, et al. Lithium Ion Repulsion-Enrichment Synergism Induced by Core-Shell Ionic Complexes to Enable High-Loading Lithium Metal Batteries[J]. Angewandte Chemie International Edition, 2021, 60(43): 23256-23266.
[62] WANG Q, YAO Z, ZHAO C, et al. Interface Chemistry of an Amide Electrolyte for Highly Reversible Lithium Metal Batteries[J]. Nature Communications, 2020, 11(1): 4188.
[63] CHEN C, GUAN J, LI NW, et al. Lotus-Root-Like Carbon Fibers Embedded with Ni-Co Nanoparticles for Dendrite-Free Lithium Metal Anodes[J]. Advanced Materials, 2021, 33(24): 2100608.
[64] XIE J, YE J, PAN F, et al. Incorporating Flexibility into Stiffness: Self-Grown Carbon Nanotubes in Melamine Sponges Enable a Lithium-Metal-Anode Capacity of 15 mAh cm−2 Cyclable at 15 mA cm−2[J]. Advanced Materials, 2019, 31(7): 1805654.
[65] CHEN H, YANG Y, BOYLE D T, et al. Free-Standing Ultrathin Lithium Metal–Graphene Oxide Host Foils with Controllable Thickness for Lithium Batteries[J]. Nature Energy, 2021, 6(8): 790-798.
[66] PEI F, FU A, YE W, et al. Robust Lithium Metal Anodes Realized by Lithiophilic 3D Porous Current Collectors for Constructing High-Energy Lithium-Sulfur Batteries[J]. ACS Nano, 2019, 13(7): 8337-8346.
[67] YUAN H, NAI J, TIAN H, et al. An Ultrastable Lithium Metal Anode Enabled by Designed Metal Fluoride Spansules[J]. Science Advances, 6(10): eaaz3112.
[68] ZHANG C, LYU R, LV W, et al. A Lightweight 3D Cu Nanowire Network with Phosphidation Gradient as Current Collector for High-Density Nucleation and Stable Deposition of Lithium[J]. Advanced Materials, 2019, 31(48): 1904991.
[69] JIN S, YE Y, NIU Y, et al. Solid-Solution-Based Metal Alloy Phase for Highly Reversible Lithium Metal Anode[J]. Journal of the American Chemical Society, 2020, 142(19): 8818-8826.
[70] LUO S, WANG Z, LI X, et al. Growth of Lithium-Indium Dendrites in All-Solid-State Lithium-Based Batteries with Sulfide Electrolytes[J]. Nature Communications, 2021, 12(1): 6968.
[71] WAN M, KANG S, WANG L, et al. Mechanical Rolling Formation of Interpenetrated Lithium Metal/Lithium Tin Alloy Foil for Ultrahigh-Rate Battery Anode[J]. Nature Communications, 2020, 11(1): 829.
[72] DUAN J, WU W, NOLAN A M, et al. Solid-State Batteries: Lithium–Graphite Paste: An Interface Compatible Anode for Solid-State Batteries[J]. Advanced Materials, 2019, 31(10): 1970068.
[73] YAN K, LU Z, LEE HW, et al. Selective Deposition and Stable Encapsulation of Lithium through Heterogeneous Seeded Growth[J]. Nature Energy, 2016, 1(3): 16010.
[74] LU Y, WANG J, CHEN Y, et al. Spatially Controlled Lithium Deposition on Silver-Nanocrystals-Decorated TiO2 Nanotube Arrays Enabling Ultrastable Lithium Metal Anode[J]. Advanced Functional Materials, 2021, 31(9): 2009605.
[75] LEE D, SUN S, KWON J, et al. Copper Nitride Nanowires Printed Li with Stable Cycling for Li Metal Batteries in Carbonate Electrolytes[J]. Advanced Materials, 2020, 32(7): 1905573.
[76] ZHAI P, WEI Y, XIAO J, et al. In Situ Generation of Artificial Solid-Electrolyte Interphases on 3D Conducting Scaffolds for High-Performance Lithium-Metal Anodes[J]. Advanced Energy Materials, 2020, 10(8): 1903339.
[77] PU J, LI J, ZHANG K, et al. Conductivity and Lithiophilicity Gradients Guide Lithium Deposition to Mitigate Short Circuits[J]. Nature Communications, 2019, 10(1): 1896.
[78] CHEN H, PEI A, WAN J, et al. Tortuosity Effects in Lithium-Metal Host Anodes[J]. Joule, 2020, 4(4): 938-952.
[79] NIU C, PAN H, XU W, et al. Self-Smoothing Anode for Achieving High-Energy Lithium Metal Batteries under Realistic Conditions[J]. Nature Nanotechnology, 2019, 14(6): 594-601.
[80] KWON H, LEE JH, ROH Y, et al. An Electron-Deficient Carbon Current Collector for Anode-Free Li-Metal Batteries[J]. Nature Communications, 2021, 12(1): 5537.
[81] YI K, LIU D, CHEN X, et al. Plasma-Enhanced Chemical Vapor Deposition of Two-Dimensional Materials for Applications[J]. Accounts of Chemical Research, 2021, 54(4): 1011-1022.
[82] BO Z, MAO S, JUN HAN Z, et al. Emerging Energy and Environmental Applications of Vertically-Oriented Graphenes[J]. Chemical Society Reviews, 2015, 44(8): 2108-2121.
[83] SUN Z, FANG S, HU Y H. 3D Graphene Materials: From Understanding to Design and Synthesis Control[J]. Chemical Reviews, 2020, 120(18): 10336-10453.
[84] ZHANG Z, LEE CS, ZHANG W. Vertically Aligned Graphene Nanosheet Arrays: Synthesis, Properties and Applications in Electrochemical Energy Conversion and Storage[J]. Advanced Energy Materials, 2017, 7(23): 1700678.
[85] PAN J, LIU G, LU G Q, et al. On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals[J]. Angewandte Chemie International Edition, 2011, 50(9): 2133-2137.
[86] XU T, YANG L, LI J, et al. NH4F-Induced Morphology Control of CoP Nanostructures to Enhance the Hydrogen Evolution Reaction[J]. Inorganic Chemistry, 2021, 60(14): 10781-10790.
[87] ZHAO J, SHAYGAN M, ECKERT J, et al. A Growth Mechanism for Free-Standing Vertical Graphene[J]. Nano Letters, 2014, 14(6): 3064-3071.
[88] YANG Y, LI L, RUAN G, et al. Hydrothermally Formed Three-Dimensional Nanoporous Ni(OH)2 Thin-Film Supercapacitors[J]. ACS Nano, 2014, 8(9): 9622-9628.
[89] LAGROW A P, CHEONG S, WATT J, et al. Can Polymorphism Be Used to Form Branched Metal Nanostructures?[J]. Advanced Materials, 2013, 25(11): 1552-1556.
[90] WANG C, WANG Y, YANG H, et al. Revealing the Role of Electrocatalyst Crystal Structure on Oxygen Evolution Reaction with Nickel as an Example[J]. Small, 2018, 14(40): 1802895.
[91] CANçADO L G, JORIO A, FERREIRA E H M, et al. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies[J]. Nano Letters, 2011, 11(8): 3190-3196.
[92] LIU D, CHEN X, HU Y, et al. Raman Enhancement on Ultra-Clean Graphene Quantum Dots Produced by Quasi-Equilibrium Plasma-Enhanced Chemical Vapor Deposition[J]. Nature Communications, 2018, 9(1): 193.
[93] HUANG K, LI Z, XU Q, et al. Lithiophilic CuO Nanoflowers on Ti-Mesh Inducing Lithium Lateral Plating Enabling Stable Lithium-Metal Anodes with Ultrahigh Rates and Ultralong Cycle Life[J]. Advanced Energy Materials, 2019, 9(29): 1900853.
[94] ZHAO F, ZHOU X, DENG W, et al. Entrapping Lithium Deposition in Lithiophilic Reservoir Constructed by Vertically Aligned ZnO Nanosheets for Dendrite-Free Li Metal Anodes[J]. Nano Energy, 2019, 62: 55-63.
[95] FANG Y, ZHANG SONG L, WU ZP, et al. A Highly Stable Lithium Metal Anode Enabled by Ag Nanoparticle-Embedded Nitrogen-Doped Carbon Macroporous Fibers[J]. Science Advances, 7(21): eabg3626.
[96] ZENG Z, LI W, CHEN X, et al. Bifunctional 3D Hierarchical Hairy Foam toward Ultrastable Lithium/Sulfur Electrochemistry[J]. Advanced Functional Materials, 2020, 30(52): 2004650.
[97] TAO S, WEN Q, JAEGERMANN W, et al. Formation of Highly Active NiO(OH) Thin Films from Electrochemically Deposited Ni(OH)2 by a Simple Thermal Treatment at a Moderate Temperature: A Combined Electrochemical and Surface Science Investigation[J]. ACS Catalysis, 2022, 12(2): 1508-1519.
[98] CUI L, HUAN Y, SHAN J, et al. Highly Conductive Nitrogen-Doped Vertically Oriented Graphene toward Versatile Electrode-Related Applications[J]. ACS Nano, 2020, 14(11): 15327-15335.
[99] ZHANG B, JIANG K, WANG H, et al. Fluoride-Induced Dynamic Surface Self-Reconstruction Produces Unexpectedly Efficient Oxygen-Evolution Catalyst[J]. Nano Letters, 2019, 19(1): 530-537.
[100] KIM H, CHOI W I, JANG Y, et al. Exceptional Lithium Storage in a Co(OH)2 Anode: Hydride Formation[J]. ACS Nano, 2018, 12(3): 2909-2921.
[101] LIU T, CHEN S, SUN W, et al. Lithiophilic Vertical Cactus-Like Framework Derived from Cu/Zn-Based Coordination Polymer through in Situ Chemical Etching for Stable Lithium Metal Batteries[J]. Advanced Functional Materials, 2021, 31(14): 2008514.
[102] ZHANG J, CHEN H, WEN M, et al. Lithiophilic 3D Copper-Based Magnetic Current Collector for Lithium-Free Anode to Realize Deep Lithium Deposition[J]. Advanced Functional Materials, 2022, 32(13): 2110110.
[103] LU Z, LIANG Q, WANG B, et al. Graphitic Carbon Nitride Induced Micro-Electric Field for Dendrite-Free Lithium Metal Anodes[J]. Advanced Energy Materials, 2019, 9(7): 1803186.
[104] CHENG Y, KE X, CHEN Y, et al. Lithiophobic-Lithiophilic Composite Architecture through Co-Deposition Technology toward High-Performance Lithium Metal Batteries[J]. Nano Energy, 2019, 63: 103854.
[105] HUANG X, FENG X, ZHANG B, et al. Lithiated NiCo2O4 Nanorods Anchored on 3D Nickel Foam Enable Homogeneous Li Plating/Stripping for High-Power Dendrite-Free Lithium Metal Anode[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 31824-31831.
[106] DONG L, NIE L, LIU W. Water-Stable Lithium Metal Anodes with Ultrahigh-Rate Capability Enabled by a Hydrophobic Graphene Architecture[J]. Advanced Materials, 2020, 32(14): 1908494.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TM912
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335933
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
王信. 锂金属负极用修饰泡沫镍的制备及电化学性能研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032316-王信-材料科学与工程系(7178KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王信]的文章
百度学术
百度学术中相似的文章
[王信]的文章
必应学术
必应学术中相似的文章
[王信]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。