[1] 段萌,张运强,潘国庆.超声速长波红外整流罩材料研究进展[J].人工晶体学报,2016,45(12):2882-2889.
[2] 齐美清. 超材料透镜和超表面对电磁波的调控及应用[D]. 东南大学, 2016.
[3] AKHTAR N, HOLM V R A, THOMAS P J, et al. Underwater Superoleophobic Sapphire (0001) Surfaces[J]. The Journal of Physical Chemistry C, 2015, 119(27): 15333-15338.
[4] SUNNY S, CHENG G, DANIEL D, et al. Transparent antifouling material for improved operative field visibility in endoscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11676-11681.
[5] 谷朋浩,史世明,蔡宝鸣, 等.浅析折叠屏幕材料及难点[J].微纳电子与智能制造,2020,2(02):112-119.
[6] SOLODAR A, CERKAUSKAITE A, DREVINSKAS R, et al. Ultrafast laser induced nanostructured ITO for liquid crystal alignment and higher transparency electrodes[J]. Applied Physics Letters, 2018, 113(8): 81603.
[7] 红外制导. 盘点全球新一代红外制导近距空空导弹. [DB/OL]. (2018/7/25)
[2022/6/30]. http://kong.top81cn.cn/weapon/iir-aam.html
[8] OBERHOLZER M. A Lens. [DB/OL]. (2018/9/25)
[2022/6/30]. https://images.unsplash.com/photo-1537889811951-584a3941326a?crop=entropy&cs=tinysrgb&fm=jpg&ixlib=rb-1.2.1&q=80&raw_url=true&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=3870
[9] NICK_H. imac-ipad-iphone-macbook-laptop-1999636. [DB/OL]. (2017/1/23)
[2022/6/30]. https://pixabay.com/zh/illustrations/imac-ipad-iphone-macbook-laptop-1999636/
[10] TANG L, ZENG Z, WANG G, et al. Study of Oil Dewetting Ability of Superhydrophilic and Underwater Superoleophobic Surfaces from Air to Water for High-Effective Self-Cleaning Surface Designing[J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18865-18875.
[11] 张倩颖. 二氧化硅增透薄膜的制备及多功能化研究[D].陕西科技大学,2021.
[12] 王武育,孙平,代桂君.氟化镁单晶体与多晶体成膜后薄膜耐磨性分析[J].稀有金属,2001(01):78-80.
[13] 万强,陆益敏,米朝伟, 等.248nm纳秒激光沉积类金刚石增透保护膜的工艺研究[J].激光与光电子学进展,2015,52(09):335-339.
[14] HUANG CA, YANG SW, SHEN CH, et al. Fabrication and evaluation of electroplated Ni–diamond and Ni–B–diamond milling tools with a high density of diamond particles[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5): 2981-2989.
[15] SCHOOP J, SALES W F, JAWAHIR I S. High speed cryogenic finish machining of Ti-6Al4V with polycrystalline diamond tools[J]. Journal of Materials Processing Technology, 2017, 250: 1-8.
[16] CYGAN-BĄCZEK E, WYŻGA P, CYGAN S, et al. Improvement in Hardness and Wear Behaviour of Iron-Based Mn-Cu-Sn Matrix for Sintered Diamond Tools by Dispersion Strengthening[J]. Materials (Basel), 2021, 14(7): 1774.
[17] MONJE I E, LOUIS E, MOLINA J M. Interfacial nano-engineering in Al/diamond composites for thermal management by in situ diamond surface gas desorption[J]. Scripta Materialia, 2016, 115: 159-163.
[18] LIANG J, NAKAMURA Y, ZHAN T, et al. Fabrication of high-quality GaAs/diamond heterointerface for thermal management applications[J]. Diamond and Related Materials, 2021, 111: 108207.
[19] SCHöBEL M, DOBRON P, BERNARDI J, et al. Elasto-plastic deformation within diamond reinforced metals for thermal management[J]. Diamond and Related Materials, 2016, 70: 52-58.
[20] KOMLENOK M, KONONENKO T, SOVYK D, et al. Diamond diffractive lens with a continuous profile for powerful terahertz radiation[J]. Optics Letters, 2021, 46(2): 340-343.
[21] KONONENKO T V, SOVYK D N, PIVOVAROV P A, et al. Fabrication of diamond diffractive optics for powerful CO2 lasers via replication of laser microstructures on silicon template[J]. Diamond and Related Materials, 2020, 101: 107656.
[22] TERENTYEV S, POLIKARPOV M, SNIGIREVA I, et al. Linear parabolic single-crystal diamond refractive lenses for synchrotron X-ray sources[J]. Journal of Synchrotron Radiation, 2017, 24(1): 103-109.
[23] SOROKIN B P, KVASHNIN G M, NOVOSELOV A S, et al. Excitation of hypersonic acoustic waves in diamond-based piezoelectric layered structure on the microwave frequencies up to 20 GHz[J]. Ultrasonics, 2017, 78: 162-165.
[24] CICCOGNANI W, COLANGELI S, VERONA C, et al. S-band hybrid amplifiers based on hydrogenated diamond FETs[J]. Scientific, 2020, 10(1): 19029-19029.
[25] DEKKAR D, BéNéDIC F, FALENTIN-DAUDRé C, et al. Microstructure and biological evaluation of nanocrystalline diamond films deposited on titanium substrates using distributed antenna array microwave system[J]. Diamond and Related Materials, 2020, 103: 107700.
[26] 满卫东,汪建华,王传新, 等.金刚石薄膜的性质、制备及应用[J].新型炭材料,2002(01):62-70.
[27] RALPHS_FOTOS. milling-cutters-end-mill-milling-3191002. [DB/OL]. (2018/3/1)
[2022/6/30]. https://pixabay.com/zh/photos/milling-cutters-end-mill-milling-3191002/
[28] STUX. abrasive-paper-structure-fund-186335. [DB/OL]. (2013/9/27)
[2022/6/30]. https://pixabay.com/zh/photos/abrasive-paper-structure-fund-186335/
[29] -MECO-. diamond-carbon-crystal-gemstone-7033691. [DB/OL]. (2022/2/27)
[2022/6/30]. https://pixabay.com/zh/photos/diamond-carbon-crystal-gemstone-7033691/
[30] HUANG L, WANG T, LI X, et al. UV-to-IR highly transparent ultrathin diamond nanofilms with intriguing performances: Anti-fogging, self-cleaning and self-lubricating[J]. Applied Surface Science, 2020, 527: 146733.
[31] SOBASZEK M, SKOWROŃSKI Ł, BOGDANOWICZ R, et al. Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes[J]. Optical Materials, 2015, 42: 24-34.
[32] CHEN YC, TSAI CY, LEE CY, et al. In vitro and in vivo evaluation of ultrananocrystalline diamond as an encapsulation layer for implantable microchips[J]. Acta Biomaterialia, 2014, 10(5): 2187-2199.
[33] YANG S, MAN W, LYU J, et al. Growth of mirror-like ultra-nanocrystalline diamond (UNCD) films by a facile hybrid CVD approach[J]. Plasma Science and Technology, 2017, 19(5): 055505.
[34] HEIMAN A, LAKIN E, ZOLOTOYABKO E, et al. Microstructure and stress in nano-crystalline diamond films deposited by DC glow discharge CVD[J]. Diamond and Related Materials, 2002, 11(3): 601-607.
[35] BOLSHAKOV A P, RALCHENKO V G, SHU G, et al. Single crystal diamond growth by MPCVD at subatmospheric pressures[J]. Materials Today Communications, 2020, 25: 101635.
[36] ZHAO Y, GUO Y, LIN L, et al. Comparison of the quality of single-crystal diamonds grown on two types of seed substrates by MPCVD[J]. Journal of Crystal Growth, 2018, 491: 89-96.
[37] CHEN J, WANG G, QI C, et al. Morphological and structural evolution on the lateral face of the diamond seed by MPCVD homoepitaxial deposition[J]. Journal of Crystal Growth, 2018, 484: 1-6.
[38] TANG W, ZHU C, YAO W, et al. Nanocrystalline diamond films produced by direct current arc plasma jet process[J]. Thin Solid Films, 2003, 429(1): 63-70.
[39] HUANG Y, CHEN L, SHAO S, et al. The 7-in. freestanding diamond thermal conductive film fabricated by DC arc Plasma Jet CVD with multi-stage magnetic fields[J]. Diamond and Related Materials, 2022, 122: 108812.
[40] GUO J, LI C, LIU J, et al. Structural evolution of Ti destroyable interlayer in large-size diamond film deposition by DC arc plasma jet[J]. Applied Surface Science, 2016, 370: 237-242.
[41] WANG H, WANG C, WANG X, et al. Effects of carbon concentration and gas pressure with hydrogen-rich gas chemistry on synthesis and characterizations of HFCVD diamond films on WC-Co substrates[J]. Surface and Coatings Technology, 2021, 409: 126839.
[42] WANG H, SHEN X, WANG X, et al. Simulation and experimental researches on the substrate temperature distribution of the large-capacity HFCVD setup for mass-production of diamond coated milling tools[J]. Diamond and Related Materials, 2020, 101: 107610.
[43] FAN S, KUANG T, XU W, et al. Effect of pretreatment strategy on the microstructure, mechanical properties and cutting performance of diamond coated hardmetal tools using HFCVD method[J]. International Journal of Refractory Metals and Hard Materials, 2021, 101: 105687.
[44] 吕反修. 金刚石膜制备与应用. 上卷[M]. 北京: 北京 : 科学出版社, 2014.
[45] SHARDA T, RAHAMAN M M, NUKAYA Y, et al. Structural and optical properties of diamond and nano-diamond films grown by microwave plasma chemical vapor deposition[J]. Diamond and Related Materials, 2001, 10(3): 561-567.
[46] WANG SG, ZHANG Q, YOON S F, et al. Optical properties of nano-crystalline diamond films deposited by MPECVD[J]. Optical Materials, 2003, 24(3): 509-514.
[47] LIN CR, LIAO WH, WEI DH, et al. Fabrication of highly transparent ultrananocrystalline diamond films from focused microwave plasma jets[J]. Surface and Coatings Technology, 2013, 231: 594-598.
[48] ASHCHEULOV P, TAYLOR A, MORE-CHEVALIER J, et al. Optically transparent composite diamond/Ti electrodes[J]. Carbon, 2017, 119: 179-189.
[49] YOU MS, HONG F CN, JENG YR, et al. Low temperature growth of highly transparent nanocrystalline diamond films on quartz glass by hot filament chemical vapor deposition[J]. Diamond and Related Materials, 2009, 18(2): 155-159.
[50] DENNIG P A, STEVENSON D A. Influence of substrate topography on the nucleation of diamond thin films[J]. Applied Physics Letters, 1991, 59(13): 1562-1564.
[51] LIU Y K, TSO P L, LIN I N, et al. Comparative study of nucleation processes for the growth of nanocrystalline diamond[J]. Diamond and Related Materials, 2006, 15(2): 234-238.
[52] IŽáK T, MARTON M, VARGA M, et al. Bias enhanced nucleation of diamond thin films in a modified HFCVD reactor[J]. Vacuum, 2009, 84(1): 49-52.
[53] ALCANTAR-PEñA J J, DE OBALDIA E, MONTES-GUTIERREZ J, et al. Fundamentals towards large area synthesis of multifunctional Ultrananocrystalline diamond films via large area hot filament chemical vapor deposition bias enhanced nucleation/bias enhanced growth for fabrication of broad range of multifunctional devices[J]. Diamond and Related Materials, 2017, 78: 1-11.
[54] STONER B R, MA G H M, WOLTER S D, et al. Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy[J]. Physical Review B, 1992, 45(19): 11067-11084.
[55] HANDSCHUH-WANG S, WANG T, TANG Y. Ultrathin Diamond Nanofilms—Development, Challenges, and Applications[J]. Small, 2021, 17(30): 2007529.
[56] YANG WB, LV FX, CAO ZX. Growth of nanocrystalline diamond protective coatings on quartz glass[J]. Journal of Applied Physics, 2002, 91(12): 10068-10073.
[57] TIWARI R N, TIWARI J N, CHANG L, et al. Enhanced Nucleation and Growth of Diamond Film on Si by CVD Using a Chemical Precursor[J]. The Journal of Physical Chemistry C, 2011, 115(32): 16063-16073.
[58] ROTTER S Z, MADALENO J C. Diamond CVD by a Combined Plasma Pretreatment and Seeding Procedure[J]. Chemical Vapor Deposition, 2009, 15(7-9): 209-216.
[59] CHUGH S, MEHTA R, LU N, et al. Comparison of graphene growth on arbitrary non-catalytic substrates using low-temperature PECVD[J]. Carbon, 2015, 93: 393-399.
[60] ÇELIKEL Ö, KAVAK H. Catalyst-free carbon nanowalls grown on glass and silicon substrates by ECR-MPCVD method[J]. Diamond and Related Materials, 2021, 120: 108610.
[61] ONG T P, XIONG F, CHANG R P H, et al. Nucleation and growth of diamond on carbon-implanted single crystal copper surfaces[J]. Journal of Materials Research, 1992, 7(9): 2429-2439.
[62] 易成. 热丝CVD法添加辅助气体制备金刚石薄膜及其发射光谱的研究[D].武汉工程大学,2016.
[63] 张婷. HFCVD法制备金刚石膜以及工艺参数对薄膜的影响[D]. 河南工业大学, 2016.
[64] FERRARI A C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects[J]. Solid State Communications, 2007, 143(1): 47-57.
[65] 薛海鹏,卢文壮,孙达飞, 等.纳米化学气相沉积金刚石的拉曼光谱[J].中国激光,2013,40(07):142-147.
修改评论