中文版 | English
题名

基于碳膜增强形核的超薄金刚石膜生长研究

其他题名
GROWTH OF ULTRATHIN DIAMOND FILMSBY ENHANCED NUCLEATION FROM CARBON LAYER
姓名
姓名拼音
CHEN Yanyan
学号
12032318
学位类型
硕士
学位专业
085601 材料工程
学科门类/专业学位类别
0856 材料与化工
导师
邬苏东
导师单位
前沿与交叉科学研究院
论文答辩日期
2022-05-06
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  光学保护膜是光学材料在应用过程中对其起保护作用的一种重要的防护材料,它不仅可以保持光学材料优异的光学性能,而且可以防止其在机械磨损、生物化学腐蚀、辐射等条件下过早地发生破坏从而使得光学器件失效。超薄金刚石膜因其优异的抗磨损、抗化学腐蚀,以及光学透过性能等,是一种综合性能十分优异的光学保护膜材料。针对目前超薄金刚石膜在制备过程中存在的厚度过厚(形核密度低)以及合成过程复杂等问题,本研究创新性地采用一种以超薄碳膜作为形核增强层的超薄金刚石膜制备方法,通过对金刚石膜在热丝化学气相沉积中生长行为的系统研究,并结合使用等离子体气相沉积技术在石英玻璃上沉积作为增强形核层的10 nm左右厚度碳膜,最终成功在石英玻璃表面制备了厚度为~30 nm的超薄纳米金刚石膜。该过程中纳米金刚石膜的形核密度高达3.8×1011 cm-2,沉积超薄金刚石膜后的石英玻璃在可见光-近红外波段仍具有≥ 90%的光学透过率。该高形核密度的获得可能是因为碳膜在纳米金刚石膜生长之前由于氢原子的刻蚀作用形成表面缺陷,从而增强了纳米金刚石膜的形核。该方法具有制备过程简单,所制备的超薄金刚石膜性能优异等特点,对促进超薄金刚石保护膜的应用将起到重要的参考作用。

其他摘要

Optical protective film is an important protective material for optical devices in the application process. It can not only maintain the excellent optical properties, but also prevent the untimely damage of optical devices in mechanical abrasion, biochemical corrosion, radiation and other conditions. Ultra-thin diamond film is an excellent optical protective film due to its outstanding abrasion resistance, excellent chemical corrosion resistance and good optical transmission performance. In this study, an innovative preparation method of ultra-thin diamond film was adopted. In the preparation process, the ultra-thin carbon film was used as the nucleation enhancement layer to solve the existing problems such as excessive thickness (low nucleation density) and complex synthesis process in the preparation process of ultra-thin diamond film. By systematically studying the growth behavior of diamond film in hot filament chemical vapor deposition and using plasma vapor deposition technology to deposit carbon film with thickness of about 10 nm on quartz glass as enhanced nucleation layer, ultra-thin diamond film with thickness of ~30 nm was successfully prepared on quartz glass surface. In this process, the nucleation density of nano-diamond film is as high as 3.8×1011 cm-2, and the quartz glass after deposition of ultra-thin diamond film still has an optical transmittance with ≥ 90% in visible to near infrared band. The high nucleation density is considered to be due to the surface defects of carbon film caused by the H atoms etching before the growth of nano-diamond film, thus enhancing the nucleation of nano-diamond film. This method has advantages of simple preparation process and excellent performance of ultra-thin diamond film, which will play an important role in promoting the application of ultra-thin diamond protective films.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1] 段萌,张运强,潘国庆.超声速长波红外整流罩材料研究进展[J].人工晶体学报,2016,45(12):2882-2889.
[2] 齐美清. 超材料透镜和超表面对电磁波的调控及应用[D]. 东南大学, 2016.
[3] AKHTAR N, HOLM V R A, THOMAS P J, et al. Underwater Superoleophobic Sapphire (0001) Surfaces[J]. The Journal of Physical Chemistry C, 2015, 119(27): 15333-15338.
[4] SUNNY S, CHENG G, DANIEL D, et al. Transparent antifouling material for improved operative field visibility in endoscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11676-11681.
[5] 谷朋浩,史世明,蔡宝鸣, 等.浅析折叠屏幕材料及难点[J].微纳电子与智能制造,2020,2(02):112-119.
[6] SOLODAR A, CERKAUSKAITE A, DREVINSKAS R, et al. Ultrafast laser induced nanostructured ITO for liquid crystal alignment and higher transparency electrodes[J]. Applied Physics Letters, 2018, 113(8): 81603.
[7] 红外制导. 盘点全球新一代红外制导近距空空导弹. [DB/OL]. (2018/7/25)
[2022/6/30]. http://kong.top81cn.cn/weapon/iir-aam.html
[8] OBERHOLZER M. A Lens. [DB/OL]. (2018/9/25)
[2022/6/30]. https://images.unsplash.com/photo-1537889811951-584a3941326a?crop=entropy&cs=tinysrgb&fm=jpg&ixlib=rb-1.2.1&q=80&raw_url=true&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=3870
[9] NICK_H. imac-ipad-iphone-macbook-laptop-1999636. [DB/OL]. (2017/1/23)
[2022/6/30]. https://pixabay.com/zh/illustrations/imac-ipad-iphone-macbook-laptop-1999636/
[10] TANG L, ZENG Z, WANG G, et al. Study of Oil Dewetting Ability of Superhydrophilic and Underwater Superoleophobic Surfaces from Air to Water for High-Effective Self-Cleaning Surface Designing[J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18865-18875.
[11] 张倩颖. 二氧化硅增透薄膜的制备及多功能化研究[D].陕西科技大学,2021.
[12] 王武育,孙平,代桂君.氟化镁单晶体与多晶体成膜后薄膜耐磨性分析[J].稀有金属,2001(01):78-80.
[13] 万强,陆益敏,米朝伟, 等.248nm纳秒激光沉积类金刚石增透保护膜的工艺研究[J].激光与光电子学进展,2015,52(09):335-339.
[14] HUANG CA, YANG SW, SHEN CH, et al. Fabrication and evaluation of electroplated Ni–diamond and Ni–B–diamond milling tools with a high density of diamond particles[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5): 2981-2989.
[15] SCHOOP J, SALES W F, JAWAHIR I S. High speed cryogenic finish machining of Ti-6Al4V with polycrystalline diamond tools[J]. Journal of Materials Processing Technology, 2017, 250: 1-8.
[16] CYGAN-BĄCZEK E, WYŻGA P, CYGAN S, et al. Improvement in Hardness and Wear Behaviour of Iron-Based Mn-Cu-Sn Matrix for Sintered Diamond Tools by Dispersion Strengthening[J]. Materials (Basel), 2021, 14(7): 1774.
[17] MONJE I E, LOUIS E, MOLINA J M. Interfacial nano-engineering in Al/diamond composites for thermal management by in situ diamond surface gas desorption[J]. Scripta Materialia, 2016, 115: 159-163.
[18] LIANG J, NAKAMURA Y, ZHAN T, et al. Fabrication of high-quality GaAs/diamond heterointerface for thermal management applications[J]. Diamond and Related Materials, 2021, 111: 108207.
[19] SCHöBEL M, DOBRON P, BERNARDI J, et al. Elasto-plastic deformation within diamond reinforced metals for thermal management[J]. Diamond and Related Materials, 2016, 70: 52-58.
[20] KOMLENOK M, KONONENKO T, SOVYK D, et al. Diamond diffractive lens with a continuous profile for powerful terahertz radiation[J]. Optics Letters, 2021, 46(2): 340-343.
[21] KONONENKO T V, SOVYK D N, PIVOVAROV P A, et al. Fabrication of diamond diffractive optics for powerful CO2 lasers via replication of laser microstructures on silicon template[J]. Diamond and Related Materials, 2020, 101: 107656.
[22] TERENTYEV S, POLIKARPOV M, SNIGIREVA I, et al. Linear parabolic single-crystal diamond refractive lenses for synchrotron X-ray sources[J]. Journal of Synchrotron Radiation, 2017, 24(1): 103-109.
[23] SOROKIN B P, KVASHNIN G M, NOVOSELOV A S, et al. Excitation of hypersonic acoustic waves in diamond-based piezoelectric layered structure on the microwave frequencies up to 20 GHz[J]. Ultrasonics, 2017, 78: 162-165.
[24] CICCOGNANI W, COLANGELI S, VERONA C, et al. S-band hybrid amplifiers based on hydrogenated diamond FETs[J]. Scientific, 2020, 10(1): 19029-19029.
[25] DEKKAR D, BéNéDIC F, FALENTIN-DAUDRé C, et al. Microstructure and biological evaluation of nanocrystalline diamond films deposited on titanium substrates using distributed antenna array microwave system[J]. Diamond and Related Materials, 2020, 103: 107700.
[26] 满卫东,汪建华,王传新, 等.金刚石薄膜的性质、制备及应用[J].新型炭材料,2002(01):62-70.
[27] RALPHS_FOTOS. milling-cutters-end-mill-milling-3191002. [DB/OL]. (2018/3/1)
[2022/6/30]. https://pixabay.com/zh/photos/milling-cutters-end-mill-milling-3191002/
[28] STUX. abrasive-paper-structure-fund-186335. [DB/OL]. (2013/9/27)
[2022/6/30]. https://pixabay.com/zh/photos/abrasive-paper-structure-fund-186335/
[29] -MECO-. diamond-carbon-crystal-gemstone-7033691. [DB/OL]. (2022/2/27)
[2022/6/30]. https://pixabay.com/zh/photos/diamond-carbon-crystal-gemstone-7033691/
[30] HUANG L, WANG T, LI X, et al. UV-to-IR highly transparent ultrathin diamond nanofilms with intriguing performances: Anti-fogging, self-cleaning and self-lubricating[J]. Applied Surface Science, 2020, 527: 146733.
[31] SOBASZEK M, SKOWROŃSKI Ł, BOGDANOWICZ R, et al. Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes[J]. Optical Materials, 2015, 42: 24-34.
[32] CHEN YC, TSAI CY, LEE CY, et al. In vitro and in vivo evaluation of ultrananocrystalline diamond as an encapsulation layer for implantable microchips[J]. Acta Biomaterialia, 2014, 10(5): 2187-2199.
[33] YANG S, MAN W, LYU J, et al. Growth of mirror-like ultra-nanocrystalline diamond (UNCD) films by a facile hybrid CVD approach[J]. Plasma Science and Technology, 2017, 19(5): 055505.
[34] HEIMAN A, LAKIN E, ZOLOTOYABKO E, et al. Microstructure and stress in nano-crystalline diamond films deposited by DC glow discharge CVD[J]. Diamond and Related Materials, 2002, 11(3): 601-607.
[35] BOLSHAKOV A P, RALCHENKO V G, SHU G, et al. Single crystal diamond growth by MPCVD at subatmospheric pressures[J]. Materials Today Communications, 2020, 25: 101635.
[36] ZHAO Y, GUO Y, LIN L, et al. Comparison of the quality of single-crystal diamonds grown on two types of seed substrates by MPCVD[J]. Journal of Crystal Growth, 2018, 491: 89-96.
[37] CHEN J, WANG G, QI C, et al. Morphological and structural evolution on the lateral face of the diamond seed by MPCVD homoepitaxial deposition[J]. Journal of Crystal Growth, 2018, 484: 1-6.
[38] TANG W, ZHU C, YAO W, et al. Nanocrystalline diamond films produced by direct current arc plasma jet process[J]. Thin Solid Films, 2003, 429(1): 63-70.
[39] HUANG Y, CHEN L, SHAO S, et al. The 7-in. freestanding diamond thermal conductive film fabricated by DC arc Plasma Jet CVD with multi-stage magnetic fields[J]. Diamond and Related Materials, 2022, 122: 108812.
[40] GUO J, LI C, LIU J, et al. Structural evolution of Ti destroyable interlayer in large-size diamond film deposition by DC arc plasma jet[J]. Applied Surface Science, 2016, 370: 237-242.
[41] WANG H, WANG C, WANG X, et al. Effects of carbon concentration and gas pressure with hydrogen-rich gas chemistry on synthesis and characterizations of HFCVD diamond films on WC-Co substrates[J]. Surface and Coatings Technology, 2021, 409: 126839.
[42] WANG H, SHEN X, WANG X, et al. Simulation and experimental researches on the substrate temperature distribution of the large-capacity HFCVD setup for mass-production of diamond coated milling tools[J]. Diamond and Related Materials, 2020, 101: 107610.
[43] FAN S, KUANG T, XU W, et al. Effect of pretreatment strategy on the microstructure, mechanical properties and cutting performance of diamond coated hardmetal tools using HFCVD method[J]. International Journal of Refractory Metals and Hard Materials, 2021, 101: 105687.
[44] 吕反修. 金刚石膜制备与应用. 上卷[M]. 北京: 北京 : 科学出版社, 2014.
[45] SHARDA T, RAHAMAN M M, NUKAYA Y, et al. Structural and optical properties of diamond and nano-diamond films grown by microwave plasma chemical vapor deposition[J]. Diamond and Related Materials, 2001, 10(3): 561-567.
[46] WANG SG, ZHANG Q, YOON S F, et al. Optical properties of nano-crystalline diamond films deposited by MPECVD[J]. Optical Materials, 2003, 24(3): 509-514.
[47] LIN CR, LIAO WH, WEI DH, et al. Fabrication of highly transparent ultrananocrystalline diamond films from focused microwave plasma jets[J]. Surface and Coatings Technology, 2013, 231: 594-598.
[48] ASHCHEULOV P, TAYLOR A, MORE-CHEVALIER J, et al. Optically transparent composite diamond/Ti electrodes[J]. Carbon, 2017, 119: 179-189.
[49] YOU MS, HONG F CN, JENG YR, et al. Low temperature growth of highly transparent nanocrystalline diamond films on quartz glass by hot filament chemical vapor deposition[J]. Diamond and Related Materials, 2009, 18(2): 155-159.
[50] DENNIG P A, STEVENSON D A. Influence of substrate topography on the nucleation of diamond thin films[J]. Applied Physics Letters, 1991, 59(13): 1562-1564.
[51] LIU Y K, TSO P L, LIN I N, et al. Comparative study of nucleation processes for the growth of nanocrystalline diamond[J]. Diamond and Related Materials, 2006, 15(2): 234-238.
[52] IŽáK T, MARTON M, VARGA M, et al. Bias enhanced nucleation of diamond thin films in a modified HFCVD reactor[J]. Vacuum, 2009, 84(1): 49-52.
[53] ALCANTAR-PEñA J J, DE OBALDIA E, MONTES-GUTIERREZ J, et al. Fundamentals towards large area synthesis of multifunctional Ultrananocrystalline diamond films via large area hot filament chemical vapor deposition bias enhanced nucleation/bias enhanced growth for fabrication of broad range of multifunctional devices[J]. Diamond and Related Materials, 2017, 78: 1-11.
[54] STONER B R, MA G H M, WOLTER S D, et al. Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy[J]. Physical Review B, 1992, 45(19): 11067-11084.
[55] HANDSCHUH-WANG S, WANG T, TANG Y. Ultrathin Diamond Nanofilms—Development, Challenges, and Applications[J]. Small, 2021, 17(30): 2007529.
[56] YANG WB, LV FX, CAO ZX. Growth of nanocrystalline diamond protective coatings on quartz glass[J]. Journal of Applied Physics, 2002, 91(12): 10068-10073.
[57] TIWARI R N, TIWARI J N, CHANG L, et al. Enhanced Nucleation and Growth of Diamond Film on Si by CVD Using a Chemical Precursor[J]. The Journal of Physical Chemistry C, 2011, 115(32): 16063-16073.
[58] ROTTER S Z, MADALENO J C. Diamond CVD by a Combined Plasma Pretreatment and Seeding Procedure[J]. Chemical Vapor Deposition, 2009, 15(7-9): 209-216.
[59] CHUGH S, MEHTA R, LU N, et al. Comparison of graphene growth on arbitrary non-catalytic substrates using low-temperature PECVD[J]. Carbon, 2015, 93: 393-399.
[60] ÇELIKEL Ö, KAVAK H. Catalyst-free carbon nanowalls grown on glass and silicon substrates by ECR-MPCVD method[J]. Diamond and Related Materials, 2021, 120: 108610.
[61] ONG T P, XIONG F, CHANG R P H, et al. Nucleation and growth of diamond on carbon-implanted single crystal copper surfaces[J]. Journal of Materials Research, 1992, 7(9): 2429-2439.
[62] 易成. 热丝CVD法添加辅助气体制备金刚石薄膜及其发射光谱的研究[D].武汉工程大学,2016.
[63] 张婷. HFCVD法制备金刚石膜以及工艺参数对薄膜的影响[D]. 河南工业大学, 2016.
[64] FERRARI A C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects[J]. Solid State Communications, 2007, 143(1): 47-57.
[65] 薛海鹏,卢文壮,孙达飞, 等.纳米化学气相沉积金刚石的拉曼光谱[J].中国激光,2013,40(07):142-147.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TQ127.1-1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335934
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
陈彦延. 基于碳膜增强形核的超薄金刚石膜生长研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032318-陈彦延-材料科学与工程(5963KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈彦延]的文章
百度学术
百度学术中相似的文章
[陈彦延]的文章
必应学术
必应学术中相似的文章
[陈彦延]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。