[1] LI S, LIU Z, ZHAO H, et al. Wireless power transfer by electric field resonance and its application in dynamic charging[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6602-6612.
[2] AZAD A N, ECHOLS A, Kulyukin V A, et al. Analysis, optimization, and demonstration of a vehicular detection system intended for dynamic wireless charging applications[J]. IEEE Transactions on Transportation Electrification, 2018, 5(1): 147-161.
[3] JIANG H, BRAZIS P, TABADDOR M, et al. Safety considerations of wireless charger for electric vehicles—A review paper[C]//2012 IEEE Symposium on Product Compliance Engineering Proceedings. IEEE, 2012: 1-6.
[4] OMBACH G. Design and safety considerations of interoperable wireless charging system for automotive[C]//2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER). IEEE, 2014: 1-4.
[5] WANG QD, Li WL, Kang JW, et al. Electromagnetic safety evaluation and protection methods for a wireless charging system in an electric vehicle[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 61(6): 1913-1925.
[6] HONG S E, Choi H D. Evaluation of EMFs to human exposure from wireless power transfer system[C]//2018 International Symposium on Antennas and Propagation (ISAP). IEEE, 2018: 1-2.
[7] SAE INTERNATIONAL J2954 TASKFORCE. Wireless power transfer for light-duty plug-in/electric vehicles and alignment methodology[S/OL].Warrendale,USA,
[2016-05-26].https://www.sae.org/standards/content/j2954_201605/.
[8] ZHONG WX, ZHANG C, LIU X, et al. A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance[J]. IEEE Transactions on Power Electronics, 2015, 30(2): 933-942.
[9] FANG Y, PONG B M H. Multiple harmonics analysis for variable frequency asymmetrical pulsewidth-modulated wireless power transfer systems[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 4023-4030.
[10] LYU Y L, MENG F Y, YANG G H, et al. A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6097-6107.
[11] NGUYEN H, AGBINYA J I. Splitting frequency diversity in wireless power transmission[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6088-6096.
[12] LIU W, CHAU K T, LEE C H T, et al. Multi-frequency multi-power one-to-many wireless power transfer system[J]. IEEE Transactions on Magnetics, 2019, 55(7): 1-9.
[13] MOON S, KIM B C, CHO S Y, et al. Analysis and design of a wireless power transfer system with an intermediate coil for high efficiency[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 5861-5870.
[14] BAUER H, ZYBALA A. Detection of an electrically conductive foreign object in an inductive transmission path: US, 0326521A1[P] 2012-12-27.
[15] FUKUDA S, NAKANO H, MURAYAMA Y, et al. A novel metal detector using the quality factor of the secondary coil for wireless power transfer systems[C]//2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications. IEEE, 2012: 241-244.
[16] SONNENBERG T, STEVENS A, DAYERIZADEH A, et al. Combined foreign object detection and live object protection in wireless power transfer systems via real-time thermal camera analysis[C]//2019 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2019: 1547-1552.
[17] TEGGATZ R E, ATRASH A, CHEN W, et al. Method and system of wireless power transfer foreign object detection: US, US9417199B2[P] 2013-07-18.
[18] HARIHARAKUMARAN D, RAJEEV K, AVINASH K. Foreign object detection in inductive coupled wireless power transfer environment using thermal sensors: US, IN325036B[P] 2019-11-14.
[19] 肖鑫,王哲,史佳玮.无线充电的异物检测装置及方法:中国,CN201510297047[P].2015-09-09.
[20] VERGHESE S, KESLER M P, HALL K L, et al. Foreign object detection in wireless energy transfer systems: US, US20130069441A1[P]2013-03-21.
[21] NIU SY, XU HQ, SUN ZR, et al. The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109302.
[22] 刘志珍,杨勇,曲晓东.一种电动汽车无线充电对位及金属异物检测系统及其方法:中国,CN105235545A[P] 2016-01-13.
[23] JANG G C, JEONG S Y, Kwak H G, et al. Metal object detection circuit with non-overlapped coils for wireless EV chargers[C]//2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC). IEEE, 2016: 1-6.
[24] 徐正伟.基于阻抗特性的电动汽车无线充电系统异物检测技术及实现[D].重庆:重庆大学,2017.
[25] JEONG S Y, KWAK H G, JANG G C, et al. Dual-purpose nonoverlapping coil sets as metal object and vehicle position detections for wireless stationary EV chargers[J]. IEEE Transactions on Power Electronics, 2018, 33(9): 7387-7397.
[26] XIANG LJ, ZHU Z, TIAN JD, et al. Foreign object detection in a wireless power transfer system using symmetrical coil sets[J]. IEEE Access, 2019, 7: 44622-44631.
[27] JEONG S Y, THAI V X, PARK J H, et al. Self-inductance-based metal object detection with mistuned resonant circuits and nullifying induced voltage for wireless EV chargers[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 748-758.
[28] THAI V X, JANG G C, JEONG S Y, et al. Symmetric sensing coil design for the blind zone free metal object detection of a stationary wireless electric vehicles charger[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 3466-3477.
[29] SUN Y, WEI G, QIAN KJ, et al. A foreign object detection method based on variation of quality factor of detection coil at multi-frequency[C]//2021 IEEE 12th Energy Conversion Congress & Exposition-Asia (ECCE-Asia). IEEE, 2021: 1578-1582.
[30] CHU S Y, ZAN X, AVESTRUZ A T. Electromagnetic model-based foreign object detection for wireless power transfer[J]. IEEE Transactions on Power Electronics, 2022, 37(1): 100-113.
[31] PATIL D, MCDONOUGH M K, MILLER J M, et al. Wireless power transfer for vehicular applications: overview and challenges[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1): 3-37.
[32] GLASER P E. Method and apparatus for converting solar radiation to electrical power: US, US3781647A[P]1973-12-25.
[33] LEE H H, KANG S H, JUNG C W. MR-WPT with reconfigurable resonator and ground for laptop application[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(3): 269-271.
[34] WANG JH, LI JG, HO S L, et al. Lateral and angular misalignments analysis of a new PCB circular spiral resonant wireless charger[J]. IEEE Transactions on Magnetics, 2012, 48(11): 4522-4525.
[35] SAMPLE A P, MEYER D T, SMITH J R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 544-554.
[36] 李阳.基于磁耦合谐振的多接收端高频无线电能传输技术研究[D]. 哈尔滨:哈尔滨工业大学,2019.
[37] MI C C, BUJA G, CHOI S Y, et al. Modern advances in wireless power transfer systems for roadway powered electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6533-6545.
[38] SHIN J, SHIN S, KIM Y, et al. Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1179-1192.
[39] TAVAKOLI R, PANTIC Z. Analysis, design, and demonstration of a 25-kW dynamic wireless charging system for roadway electric vehicles[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(3): 1378-1393.
[40] CHENG CW, ZHOU Z, LI WG, et al. A multi-load wireless power transfer system with series-parallel-series compensation[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7126-7130.
[41] 沈锦飞,磁共振无线充电技术[M]. 北京:机械工业出版社,2020.
[42] 张志文,范威,伍莎莎,等.基于磁共振无线电能传输系统中三种结构线圈空间磁场分布研究[J].计算机应用与软件,2016,33(12):75-79+135.
[43] TANG S C, LUN T L T, GUO Z, et al. Intermediate range wireless power transfer with segmented coil transmitters for implantable heart pumps[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3844-3857.
[44] ZHANG YM, CHEN SX, LI X, et al. Coil comparison and downscaling principles of inductive wireless power transfer systems[C]//2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW). IEEE, 2020: 116-122.
[45] KIM D, HWANG K, PARK J, et al. Miniaturization of implantable micro-robot propulsion using a wireless power transfer system[J]. Micromachines, 2017, 8(9): 269.
[46] 孙淑彬,张波,肖文勋,等.恒压输出多负载无线电能传输系统分析与设计[J].电源学报:1-18.
[47] HOU J, CHEN QH, ZHANG ZL, et al. Analysis of output current characteristics for higher order primary compensation in inductive power transfer systems[J]. IEEE Transactions on Power Electronics, 2018, 33(8): 6807-6821.
[48] 戴欣,无线电能传输技术[M].北京:科学出版社,2017.
[49] 孙运全,顾加亭,陆洋锐,等.基于双边LCC补偿槽恒流恒压输出的无线充电系统研究[J].电子器件,2019,42(06):1428-1434.
[50] 魏小钊.LCC-LCC结构电动汽车无线充电若干问题的研究[D].济南:山东大学,2021.
[51] JENSON J, THERATTIL J P, JOHNSON J A. A novel LCC-LCL compensation WPT system for better performance[C]//2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). IEEE, 2019: 1-6.
[52] 李博.基于LCC-S/P补偿网络切换的IPT系统研究[D].武汉:武汉理工大学,2019.
[53] 林云志,赵争鸣.基于LCL-S型谐振的大功率无线电能传输实验平台设计[J].实验技术与管理,2021,38(01):93-98.
[54] 全国汽车标准化技术委员会(SAC/TC 114). 电动汽车无线充电系统: GB/T 38775-2020[S/OL]. 中国:国家标准化管理委员会,
[2020-04-28].http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=7DAD01684831C12CE05A63BB5D924B59.
[55] NIU SY, YU H, NIU S X, et al. Power loss analysis and thermal assessment on wireless electric vehicle charging technology: The over-temperature risk of ground assembly needs attention[J]. Applied Energy, 2020, 275: 115344.
[56] 魏岳锐,董亮,杨威,等.电磁感应式无线充电发热与电磁辐射仿真研究[J].电波科学学报,2021,36(05):653-660.
[57] 孙天.电动车无线充电系统中小尺寸金属异物的检测与定位研究[D].哈尔滨:哈尔滨工业大学,2020.
[58] OLSEN R G, MORENO P. Some observations about shielding extremely low-frequency magnetic fields by finite width shields[J]. IEEE Transactions on Electromagnetic Compatibility, 1996, 38(3): 460-468.
[59] ROßKOPF A, BäR E, JOFFE C, et al. Calculation of power losses in litz wire systems by coupling FEM and PEEC method[J]. IEEE Transactions on Power Electronics, 2016, 31(9): 6442-6449.
[60] 曹正斐.基于改进型LCL-S的电网巡检机器人无线充电系统仿真研究[D].兰州:兰州理工大学,2019.
修改评论