中文版 | English
题名

电动汽车无线充电系统异物检测装置设计与实现

其他题名
DESIGN AND IMPLEMENTATION OF FOREIGN OBJECT DETECTION DEVICE FOR WIRELESS ELECTRIC VEHICLE CHARGING SYSTEMS
姓名
姓名拼音
ZHANG Cheng
学号
11930176
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
蹇林旎
导师单位
电子与电气工程系
论文答辩日期
2022-04-28
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  电动汽车无线充电技术以其场地资源利用率高,操作便捷、友好等显著优势,有望在未来成为促进电动汽车推广普及的重要因素。为推动技术平稳快速发展,开展相关技术风险问题的研究具有紧迫性。在实际场景中,由于充电环境较为开放,金属异物容易落入充电区域。异物的侵入不仅会影响充电效率,而且异物本身在交变磁场作用下会产生剧烈温升现象,极易引起火灾风险。为了以准确、可靠和低成本的方式实现金属异物检测,消除潜在的风险隐患,本文设计并验证了基于耦合线圈空间磁场分布特征的金属异物检测方案。

  本文的主要工作内容包括:首先,基于电磁学基础理论,研究金属异物与耦合磁场的相互作用机理,分析金属异物对无线充电系统能量传输和安全运行产生的不良影响;其次,针对表现为非极化场的圆形线圈和极化场的DD形线圈,分别提出与二者空间磁场分布特征匹配的异物检测方案。为解决金属异物检测面临的两大痛点,即低灵敏度区和盲区问题,本文创新性地提出了部分区域多匝绕制方法,可调制C形检测单元和补丁线圈设计。现实充电场景中,车辆与地面发射端存在不对准的情形。立足实际,本文进一步提出了适用于偏移情形的金属异物电磁感知方案。该方案所需的位置偏移信息,可通过复用同一套阵列检测线圈得到。前述工作均通过大量仿真案例和实验研究进行了验证。基于圆形耦合线圈和DD形耦合线圈,各自搭建集成了金属异物检测功能的3 kW无线充电系统。结果表明,对异物可能侵入的充电区域,所提出方案实现了全域可检。在行业标准允许的±75 mm偏移范围内,所提出方案能够适应不同工况下的异物检测需求。

其他摘要

Taking the solid advantages of high utilization rate of land resources and user-friendly characteristics, wireless electric vehicle charging (WEVC) technology is expected to be a key factor enhancing electric vehicle adoption in the future. To promote steady and rapid development of this technology, it is important and urgent to study risk-related issues. In practical scenarios, some metal objects may fall into the charging area since it is not totally enclosed. For one thing, the intrusion of metal objects will affect the charging efficiency. For another, the temperature rise of metal objects will be very high due to the electromagnetic interaction between them and high-frequency coupling field, which is easy to cause fire risk. To detect metal objects in an accurate, reliable and cost-effective way for the elimination of potential risks, a metal object detection (MOD) scheme based on the characteristics of magnetic field established by the coupling coils is designed and verified in this paper.

The main contents of this paper include: Firstly, based on the fundamentals of electromagnetics, the mechanism of the interaction between metal objects and coupling field is studied, and the adverse effects of metal objects on the power transmission and safe operation of WEVC systems are analyzed. Secondly, for the circular coils with non-polarized field and DD coils with polarized field, corresponding MOD schemes matching the field characteristics are proposed. To solve the two major pain points of MOD, viz., low-sensitivity zone and blind zone, a method of multi-turn winding in partial regions, a C-shaped detection unit with size modulation and a design of patch are innovatively proposed in this paper. In practical charging scenarios, the spatial misalignments between EVs and the power transmitter is inevitable. On this basis, this paper further proposes a MOD scheme suitable for the misaligned scenarios. The misalignment information required by this scheme can be obtained by reusing the same set of detection coils. The above works are comprehensively verified by a large number of cases in simulation and experiments. Employing circular coils and DD coils, the two 3-kW WEVC systems integrated with MOD function are built, respectively. The results show that the proposed MOD scheme can stably detect the whole charging area where metal objects may intrude. Within the ±75-mm misalignment range allowed by the standards in the WEVC industry, the proposed MOD scheme can be applicable under working conditions of WEVC systems.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1] LI S, LIU Z, ZHAO H, et al. Wireless power transfer by electric field resonance and its application in dynamic charging[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6602-6612.
[2] AZAD A N, ECHOLS A, Kulyukin V A, et al. Analysis, optimization, and demonstration of a vehicular detection system intended for dynamic wireless charging applications[J]. IEEE Transactions on Transportation Electrification, 2018, 5(1): 147-161.
[3] JIANG H, BRAZIS P, TABADDOR M, et al. Safety considerations of wireless charger for electric vehicles—A review paper[C]//2012 IEEE Symposium on Product Compliance Engineering Proceedings. IEEE, 2012: 1-6.
[4] OMBACH G. Design and safety considerations of interoperable wireless charging system for automotive[C]//2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER). IEEE, 2014: 1-4.
[5] WANG QD, Li WL, Kang JW, et al. Electromagnetic safety evaluation and protection methods for a wireless charging system in an electric vehicle[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 61(6): 1913-1925.
[6] HONG S E, Choi H D. Evaluation of EMFs to human exposure from wireless power transfer system[C]//2018 International Symposium on Antennas and Propagation (ISAP). IEEE, 2018: 1-2.
[7] SAE INTERNATIONAL J2954 TASKFORCE. Wireless power transfer for light-duty plug-in/electric vehicles and alignment methodology[S/OL].Warrendale,USA,
[2016-05-26].https://www.sae.org/standards/content/j2954_201605/.
[8] ZHONG WX, ZHANG C, LIU X, et al. A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance[J]. IEEE Transactions on Power Electronics, 2015, 30(2): 933-942.
[9] FANG Y, PONG B M H. Multiple harmonics analysis for variable frequency asymmetrical pulsewidth-modulated wireless power transfer systems[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 4023-4030.
[10] LYU Y L, MENG F Y, YANG G H, et al. A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6097-6107.
[11] NGUYEN H, AGBINYA J I. Splitting frequency diversity in wireless power transmission[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6088-6096.
[12] LIU W, CHAU K T, LEE C H T, et al. Multi-frequency multi-power one-to-many wireless power transfer system[J]. IEEE Transactions on Magnetics, 2019, 55(7): 1-9.
[13] MOON S, KIM B C, CHO S Y, et al. Analysis and design of a wireless power transfer system with an intermediate coil for high efficiency[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 5861-5870.
[14] BAUER H, ZYBALA A. Detection of an electrically conductive foreign object in an inductive transmission path: US, 0326521A1[P] 2012-12-27.
[15] FUKUDA S, NAKANO H, MURAYAMA Y, et al. A novel metal detector using the quality factor of the secondary coil for wireless power transfer systems[C]//2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications. IEEE, 2012: 241-244.
[16] SONNENBERG T, STEVENS A, DAYERIZADEH A, et al. Combined foreign object detection and live object protection in wireless power transfer systems via real-time thermal camera analysis[C]//2019 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2019: 1547-1552.
[17] TEGGATZ R E, ATRASH A, CHEN W, et al. Method and system of wireless power transfer foreign object detection: US, US9417199B2[P] 2013-07-18.
[18] HARIHARAKUMARAN D, RAJEEV K, AVINASH K. Foreign object detection in inductive coupled wireless power transfer environment using thermal sensors: US, IN325036B[P] 2019-11-14.
[19] 肖鑫,王哲,史佳玮.无线充电的异物检测装置及方法:中国,CN201510297047[P].2015-09-09.
[20] VERGHESE S, KESLER M P, HALL K L, et al. Foreign object detection in wireless energy transfer systems: US, US20130069441A1[P]2013-03-21.
[21] NIU SY, XU HQ, SUN ZR, et al. The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109302.
[22] 刘志珍,杨勇,曲晓东.一种电动汽车无线充电对位及金属异物检测系统及其方法:中国,CN105235545A[P] 2016-01-13.
[23] JANG G C, JEONG S Y, Kwak H G, et al. Metal object detection circuit with non-overlapped coils for wireless EV chargers[C]//2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC). IEEE, 2016: 1-6.
[24] 徐正伟.基于阻抗特性的电动汽车无线充电系统异物检测技术及实现[D].重庆:重庆大学,2017.
[25] JEONG S Y, KWAK H G, JANG G C, et al. Dual-purpose nonoverlapping coil sets as metal object and vehicle position detections for wireless stationary EV chargers[J]. IEEE Transactions on Power Electronics, 2018, 33(9): 7387-7397.
[26] XIANG LJ, ZHU Z, TIAN JD, et al. Foreign object detection in a wireless power transfer system using symmetrical coil sets[J]. IEEE Access, 2019, 7: 44622-44631.
[27] JEONG S Y, THAI V X, PARK J H, et al. Self-inductance-based metal object detection with mistuned resonant circuits and nullifying induced voltage for wireless EV chargers[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 748-758.
[28] THAI V X, JANG G C, JEONG S Y, et al. Symmetric sensing coil design for the blind zone free metal object detection of a stationary wireless electric vehicles charger[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 3466-3477.
[29] SUN Y, WEI G, QIAN KJ, et al. A foreign object detection method based on variation of quality factor of detection coil at multi-frequency[C]//2021 IEEE 12th Energy Conversion Congress & Exposition-Asia (ECCE-Asia). IEEE, 2021: 1578-1582.
[30] CHU S Y, ZAN X, AVESTRUZ A T. Electromagnetic model-based foreign object detection for wireless power transfer[J]. IEEE Transactions on Power Electronics, 2022, 37(1): 100-113.
[31] PATIL D, MCDONOUGH M K, MILLER J M, et al. Wireless power transfer for vehicular applications: overview and challenges[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1): 3-37.
[32] GLASER P E. Method and apparatus for converting solar radiation to electrical power: US, US3781647A[P]1973-12-25.
[33] LEE H H, KANG S H, JUNG C W. MR-WPT with reconfigurable resonator and ground for laptop application[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(3): 269-271.
[34] WANG JH, LI JG, HO S L, et al. Lateral and angular misalignments analysis of a new PCB circular spiral resonant wireless charger[J]. IEEE Transactions on Magnetics, 2012, 48(11): 4522-4525.
[35] SAMPLE A P, MEYER D T, SMITH J R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 544-554.
[36] 李阳.基于磁耦合谐振的多接收端高频无线电能传输技术研究[D]. 哈尔滨:哈尔滨工业大学,2019.
[37] MI C C, BUJA G, CHOI S Y, et al. Modern advances in wireless power transfer systems for roadway powered electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6533-6545.
[38] SHIN J, SHIN S, KIM Y, et al. Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1179-1192.
[39] TAVAKOLI R, PANTIC Z. Analysis, design, and demonstration of a 25-kW dynamic wireless charging system for roadway electric vehicles[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(3): 1378-1393.
[40] CHENG CW, ZHOU Z, LI WG, et al. A multi-load wireless power transfer system with series-parallel-series compensation[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7126-7130.
[41] 沈锦飞,磁共振无线充电技术[M]. 北京:机械工业出版社,2020.
[42] 张志文,范威,伍莎莎,等.基于磁共振无线电能传输系统中三种结构线圈空间磁场分布研究[J].计算机应用与软件,2016,33(12):75-79+135.
[43] TANG S C, LUN T L T, GUO Z, et al. Intermediate range wireless power transfer with segmented coil transmitters for implantable heart pumps[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3844-3857.
[44] ZHANG YM, CHEN SX, LI X, et al. Coil comparison and downscaling principles of inductive wireless power transfer systems[C]//2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW). IEEE, 2020: 116-122.
[45] KIM D, HWANG K, PARK J, et al. Miniaturization of implantable micro-robot propulsion using a wireless power transfer system[J]. Micromachines, 2017, 8(9): 269.
[46] 孙淑彬,张波,肖文勋,等.恒压输出多负载无线电能传输系统分析与设计[J].电源学报:1-18.
[47] HOU J, CHEN QH, ZHANG ZL, et al. Analysis of output current characteristics for higher order primary compensation in inductive power transfer systems[J]. IEEE Transactions on Power Electronics, 2018, 33(8): 6807-6821.
[48] 戴欣,无线电能传输技术[M].北京:科学出版社,2017.
[49] 孙运全,顾加亭,陆洋锐,等.基于双边LCC补偿槽恒流恒压输出的无线充电系统研究[J].电子器件,2019,42(06):1428-1434.
[50] 魏小钊.LCC-LCC结构电动汽车无线充电若干问题的研究[D].济南:山东大学,2021.
[51] JENSON J, THERATTIL J P, JOHNSON J A. A novel LCC-LCL compensation WPT system for better performance[C]//2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). IEEE, 2019: 1-6.
[52] 李博.基于LCC-S/P补偿网络切换的IPT系统研究[D].武汉:武汉理工大学,2019.
[53] 林云志,赵争鸣.基于LCL-S型谐振的大功率无线电能传输实验平台设计[J].实验技术与管理,2021,38(01):93-98.
[54] 全国汽车标准化技术委员会(SAC/TC 114). 电动汽车无线充电系统: GB/T 38775-2020[S/OL]. 中国:国家标准化管理委员会,
[2020-04-28].http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=7DAD01684831C12CE05A63BB5D924B59.
[55] NIU SY, YU H, NIU S X, et al. Power loss analysis and thermal assessment on wireless electric vehicle charging technology: The over-temperature risk of ground assembly needs attention[J]. Applied Energy, 2020, 275: 115344.
[56] 魏岳锐,董亮,杨威,等.电磁感应式无线充电发热与电磁辐射仿真研究[J].电波科学学报,2021,36(05):653-660.
[57] 孙天.电动车无线充电系统中小尺寸金属异物的检测与定位研究[D].哈尔滨:哈尔滨工业大学,2020.
[58] OLSEN R G, MORENO P. Some observations about shielding extremely low-frequency magnetic fields by finite width shields[J]. IEEE Transactions on Electromagnetic Compatibility, 1996, 38(3): 460-468.
[59] ROßKOPF A, BäR E, JOFFE C, et al. Calculation of power losses in litz wire systems by coupling FEM and PEEC method[J]. IEEE Transactions on Power Electronics, 2016, 31(9): 6442-6449.
[60] 曹正斐.基于改进型LCL-S的电网巡检机器人无线充电系统仿真研究[D].兰州:兰州理工大学,2019.

所在学位评定分委会
电子与电气工程系
国内图书分类号
TM724
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335936
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
章程. 电动汽车无线充电系统异物检测装置设计与实现[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930176-章程-电子与电气工程系(7764KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[章程]的文章
百度学术
百度学术中相似的文章
[章程]的文章
必应学术
必应学术中相似的文章
[章程]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。