中文版 | English
题名

人工高导电体存在条件下的电阻率反演研究

其他题名
ELECTRICAL RESISTIVITY TOMOGRAPHY INVERSION WITH THE PRESENCE OF ARTIFICIAL HIGH-CONDUCTIVITY METALLIC INFRASTRUCTURES
姓名
姓名拼音
YANG Lichun
学号
11930414
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
杨迪琨
导师单位
地球与空间科学系
论文答辩日期
2022-05
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

因为技术成熟度高、成本较低等优势,电阻率法被广泛应用于各种勘查任务中。而由于城市、工业等环境中人工高导电体的存在,电阻率法的勘探效果受到很大影响。因此研究高导电体存在时电法数据的特征,开发高效的三维正反演算法以实现高导电体存在条件下的电阻率反演具有重要意义。钢筋混凝土地板是最常见的人工高导电体之一,混凝土层中内嵌的钢筋网会严重扰乱地下电流分布,使得电阻率法无法探测地下目标。通过对含钢筋混凝土地板的合成模型进行正演模拟,本文发现,钢筋网的存在使得电势差数据与视电阻率数据中出现了明显的异常。由于忽略钢筋混凝土地板的常规反演方法无法得到合理的结果,本文提出热启动反演法与地面-地下联合电极阵列这两种策略来改善反演结果。在热启动反演法中,首先找到能等效替代钢筋混凝土效应的分层模型;然后将该模型作为反演的初始模型和参考模型。该方法能有效恢复钢筋网与其他地质体之间的突变界面。 此外,本文改进了电极布设方式,成功提高了目标深度处的分辨率。本文使用这两种策略对某场地内被钢筋网干扰的实测数据集进行了反演。实测数据的反演结果验证了本文所提出策略的有效性。 为了实现对高导电体的高效建模,以及高导电体存在条件下的电阻率三维反 演,本文以三维高效多尺度等效电阻网络正演算法为基础,编写了高斯牛顿反演程序,实现了对体电导率、面电导率和线电导率这三种分别定义在体单元、面单元和棱单元上的电导率参数的反演成像。本文以实际监测场景为原型设计了三个数值模拟实验:在煤田采空区注浆监测中,使用线电导率对大量钢套管进行建模,实现了对体电导率的反演。本文发现正确模拟钢套管效应对于提升电法勘探深度的重要作用,相比于常规地面电法,长电极电法对深部地下电阻率的变化更加敏感。 在页岩气水力压裂压裂液监测中,本文使用线电导率模拟钢套管,同时使用面电导率模型来反演压裂液的分布。在钢筋腐蚀程度监测中,本文反演地面电法数据, 得到以线电导率表征的钢筋腐蚀程度。通过这三个数值实验,证明了本文算法能够对不同维度的高导电体进行高效模拟,并验证了对体电导率、面电导率和线电导率这三种电导率参数反演的有效性。

其他摘要

Due to the advantages of high technical maturity and low cost, electrical resistivity tomography (ERT) is widely used in various exploration tasks. However, because of the existence of artificial high-conductivity metallic infrastructures in urban and industrial environments, the exploration performance of ERT is greatly affected. So, it is of great significance to study the characteristics of the ERT dataset when metallic infrastructures exist and develop an efficient 3D forward and inversion algorithm. Reinforced concrete floors are one of the most common high-conductivity metallic infrastructures. The wire mesh embedded in the concrete layer will severely disturb the current distribution, making the ERT unable to detect subsurface targets. Through the forward simulation of the synthetic model with reinforced concrete floor, it is found that the existence of wire mesh makes the potential difference data and apparent resistivity data to exhibit obvious anomalies. The conventional inversion method that ignores the reinforced concrete floor cannot obtain reasonable results. In this paper, two strategies, the warm-start inversion method and the surface-underground combined electrode array, are proposed to improve the inversion results. In the warm-start inversion method, a layered model which can reproduce the effect of the reinforced concrete floor is found. Then this model is used as the initial and reference model for inversion. This method can restore the abrupt interface between the wire mesh and other geological bodies. In addition, the electrode arrangement is changed to improve the resolution at the target depth. This paper uses these two strategies to invert the observed data disturbed by the wire mesh. The inversion results demonstrate the effectiveness of our strategies. In order to develop the efficient and fast simulation of artificial high-conductivity metallic infrastructures and the 3D ERT inversion in the presence of high-conductivity structures, this paper writes the RESNet Gauss-Newton inversion program based on the 3D efficient multi-scale RESNet forward simulation algorithm, which can recover three different conductivity parameters: cellCon defined in cells, faceCon defined on faces, and edgeCon defined on edges. This paper designs three numerical experiments based on the actual monitoring scene. In the imaging of grouting monitoring in the mined-out area of the coalfield, this paper uses edgeCon to simulate a large number of steel casings and invert surface electrical data for cellCon. This paper found that the steel casing plays a vital role in improving the depth of electrical investigation. Compared with the conventional surface ERT method, the LEERT method is more sensitive to the change of subsurface resistivity. In the imaging of fracturing fluid monitoring in shale gas hydraulic fracturing, the LEERT can effectively image the fracturing fluid simulated by faceCon. In the imaging of monitoring steel corrosion in concrete structures, this paper proposes using surface ERT to monitor rebar corrosion. The inversion imaging accurately recovers the corroded areas in the rebar. These three synthetic model experiments prove that the inversion program can efficiently image high-conductivity infrastructures of different dimensions. Furthermore, the accuracy of the inversion of the three conductivity parameters is verified.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-05
参考文献列表

[1] 刘国兴. 电法勘探原理与方法 [M]. 北京: 地质出版社, 2005: 3-10.
[2] DAILY W, RAMIREZ A, LABRECQUE D, et al. Electrical resistivity tomography of vadose water movement[J]. Water Resources Research, 1992, 28(5): 1429-1442.
[3] CHAMBERS J E, LOKE M H, OGILVY R D, et al. Noninvasive monitoring of dnapl migration through a saturated porous medium using electrical impedance tomography[J]. Journal of Contaminant Hydrology, 2004, 68: 1-22.
[4] CHAMBERS J E, KURAS O, MELDRUM P I, et al. Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site[J]. Geophysics, 2006, 71(6): B231-B239.
[5] CHAMBERS J E, WILKINSON P B, WARDROP D, et al. Bedrock detection beneath riverterrace deposits using three-dimensional electrical resistivity tomography[J]. Geomorphology, 2012, 177–178: 17-25.
[6] BI B K. The application of the electric method to bauxite exploration[J]. Geophysical and Geochemical Exploration, 2009, 33(4): 400-402.
[7] SANTARATO G, RANIERI G, OCCHI M, et al. Three-dimensional electrical resistivity tomography to control the injection of expanding resins for the treatment and stabilization of foundation soils[J]. Engineering Geology, 2011, 119(1–2): 18-30.
[8] JOHNSON T C, WELLMAN D. Accurate modelling and inversion of electrical resistivity data in the presence of metallic infrastructure with known location and dimension[J]. Geophysical Journal International, 2015, 202(2): 1096-1108.
[9] ROCROI J P, KOULIKOV A V. The use of vertical line sources in electrical prospecting for hydrocarbon[J]. Geophysical Prospecting, 1985, 33: 138-152.
[10] RAMIREZ A L, NEWMARK R L, DAILY W D. Monitoring carbon dioxide floods using electrical resistance tomography (ert): Sensitivity studies[J]. Journal of Environmental and Engineering Geophysics, 2003, 8(3): 187-208.
[11] RUCKER D F, FINK J B, LOKE M H. Environmental monitoring of leaks using time-lapsed long electride electrical resistivity[J]. Journal of Applied Geophysics, 2011, 74(4): 242-254.
[12] RONCZKA M, RÜCKER C, GÜNTHER T. Numerical study of long-electrode electric resistivity tomography-accuracy, sensitivity, and resolution[J]. Geophysics, 2015, 80(6): E317-E328.
[13] LI Y, YANG D. Electrical imaging of hydraulic fracturing fluid using steel-cased wells and a deep-learning method[J]. Geophysics, 2021, 86(4): E315-E332.
[14] DAILY W, RAMIREZ A, NEWMARK R, et al. Low-cost reservoir tomographs of electrical resistivity[J]. The Leading Edge, 2004, 23(5): 472-480.
[15] ROBLES K P V, KIM D W, YEE J J, et al. Electrical resistivity measurements of reinforced concrete slabs with delamination defects[J]. Sensors, 2020, 20(24): 7113.
[16] COMMER M, HOVERSTEN G M, UM E S. Transient-electromagnetic finite-difference time domain earth modeling over steel infrastructure[J]. Geophysics, 2015, 80(2): E147-E162.
[17] HEAGY L J, COCKETT R, OLDENBURG D W, et al. Modelling electromagnetic problems in the presence of cased wells[C]//SEG Technical Program Expanded Abstracts. Houston: Society of Exploration Geophysicists, 2015: 699-703.
[18] ZHU T, FENG R. Resistivity tomography with a vertical line current source and its applications to the evaluation of residual oil saturation[J]. Journal of Applied Geophysics, 2011, 73(2): 155-163.
[19] RUCKER D F, LOKE M H, LEVITT M T, et al. Electrical-resistivity characterization of an industrial site using long electrodes[J]. Geophysics, 2010, 75(4): WA95-WA104.
[20] WEISS C J, ALDRIDGE D F, KNOX H A, et al. The direct-current response of electrically conducting fractures excited by a grounded current source[J]. Geophysics, 2016, 81: E201-E210.
[21] YANG J, LIU Y, WU X. 3-d dc resistivity modelling with arbitrary long electrode sources using finite element method on unstructured grids[J]. Geophysical Journal International, 2017, 211(2): 1162-1176.
[22] HEAGY L J, OLDENBURG D W. Modeling electromagnetics on cylindrical meshes with applications to steel-cased wells[J]. Computers & Geosciences, 2019, 125: 115-130.
[23] YANG D, OLDENBURG D W, HEAGY L J. 3d dc resistivity modeling of steel casing for reservoir monitoring using equivalent resistor network[C]//SEG Technical Program Expanded Abstracts. Houston: Society of Exploration Geophysicists, 2016: 932-936.
[24] HU Y, YANG D, LI Y, et al. 3-d numerical study on controlled source electromagnetic monitoring of hydraulic fracturing fluid with the effect of steel-cased wells[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-10.
[25] MARINENKO A V, EPOV M I, OLENCHENKO V V. Solving direct problems of electrical resistivity tomography for media with high-conductivity irregular-shaped heterogeneities by an example of a multiple well platform[J]. Journal of Applied and Industrial Mathematics, 2019, 13(1): 93-102.
[26] GARZON A J, SANCHEZ J, ANDRADE C, et al. Modification of four point method to measure the concrete electrical resistivity in presence of reinforcing bars[J]. Cement and Concrete Composites, 2014, 53: 249-257.
[27] HAAS A, RUCKER D F, LEVITT M T. Investigating the effective resistivity of reinforced concrete waste storage tanks at the hanford site[J]. Geophysics, 2022, 87(1): B31-B43.
[28] BURGER H R, SHEEHAN A F, JON C H. Introduction to applied geophysics: Exploring the shallow subsurface[M]. London: W.W.Norton & Company, 2006.
[29] LOKE M H, CHAMBERS J E, RUCKER D F, et al. Recent developments in the direct-current geoelectrical imaging method[J]. Journal of Applied Geophysics, 2013, 95: 135-156.
[30] INMAN J R. Resistivity inversion with ridge regression[J]. Geophysics, 1975, 40: 798-817.
[31] TRIPP A C, HOHMANN G W, SWIFT C M. Two-dimensional resistivity inversion[J]. Geophysics, 1984, 49: 1708-1717.
[32] LOKE M H, BARKER R D. Rapid least-squares inversion of apparent resistivity pseudosec tions by a quasi-newton method[J]. Geophysical Prospecting, 1996, 44: 131-152.
[33] WIWATTANACHANG N, GIAO P H. Monitoring crack development in fiber concrete beam by using electrical resistivity imaging[J]. Journal of Applied Geophysics, 2011, 75: 294-304.
[34] LI Y, OLDENBURG D W. Inversion of 3-d dc resistivity data using an approximate inverse mapping[J]. Geophysical Journal International, 1994, 116: 527-537.
[35] 吴小平, 徐果明. 电阻率三维反演中偏导数矩阵的求取与分析 [J]. 石油地球物理勘探,1999, 34: 363-372.
[36] 吴小平, 徐果明. 利用共轭梯度法的电阻率三维反演研究 [J]. 地球物理学报, 2000, 43:420-426.
[37] 吴小平, 汪彤彤. 电阻率三维反演方法研究进展 [J]. 地球物理学进展, 2002, 17: 156-162.
[38] PIDLISECKY A, HABER E, KNIGHT R. Resinvm3d: A 3d resistivity inversion package[J]. Geophysics, 2007, 72: H1-H10.
[39] YI M J, KIM J H, SONG Y, et al. Three-dimensional imaging of subsurface structures using resistivity data[J]. Geophysical Prospecting, 2001, 49: 483-497.
[40] 吴小平. 非平坦地形条件下电阻率三维反演 [J]. 地球物理学报, 2005, 48(4): 932-936.
[41] 吴小平, 刘洋, 王威. 基于非结构网格的电阻率三维带地形反演 [J]. 地球物理学报, 2015,58(8): 2706-2717.
[42] RUCKER D F, MYERS D A, CUBBAGE B, et al. Surface geophysical exploration: developing noninvasive tools to monitor past leaks around hanford's tank farms[J]. Environ Monit Assess, 2013, 185: 995-1010.
[43] JOHNSON T C, WELLMAN D M. Re-inversion of surface electrical resistivity tomography data from the hanford site b-complex[R]. United States: Office of Scientific and Technical Information (OSTI), 2013.
[44] RUCKER D F, FINK J B. Inorganic plume delineation using surface high-resolution electrical resistivity at the bc cribs and trenches site, hanford[J]. Vadose Zone Journal, 2007, 6(4): 946-958.
[45] ROCKHOLD M L, ROBINSON J L, PARAJULI K, et al. Groundwater characterization and monitoring at a complex industrial waste site using electrical resistivity imaging[J]. Hydrogeology Journal, 2020, 28: 2115-2127.
[46] COCKETT R, KANG S, HEAGY L J, et al. Simpeg: An open source framework for simulation and gradient based parameter estimation in geophysical applicaations[J]. Computers & Geosciences, 2015, 85(part A): 142-154.
[47] YANG D, OLDENBURG D W. 3d inversion of total magnetic intensity data for time-domain em at the lalor massive sulphide deposit[J]. Exploration Geophysics, 2017, 48(2): 110-123.
[48] KIFLU H, KRUSE S, LOKE M H, et al. Improving resistivity survey resolution at sites with limited spatial extent using buried electrode arrays[J]. Journal of Applied Geophysics, 2016, 135: 338-355.
[49] 申家宁, 晏井春, 高卫国, 等. 多相抽提技术在化工污染地块修复中的应用潜力 [J]. 环境工程学报, 2021, 15(10): 3286-3296.
[50] 刘雪松, 蔡五田, 李胜涛. 土壤与地下水中 DNAPL 的污染机理与调查技术 [J]. 油气田环境保护, 2011, 21(6): 37-39+43+81.
[51] 朱建友, 邓亚平, 施小清, 等. 高密度电阻率法探测 DNAPLs 污染的适应性探讨 [J]. 水文地质工程地质, 2017, 44(1): 144-151.
[52] ZHANG J, MACKIE R L, R M T. 3-d resistivity forward modeling and inversion using conjugate gradients[J]. Geophysics, 1995, 60: 1313-1325.
[53] GERAMI A. 3d electrical resistivity forward modeling using the kirchhoff's method for solving an equivalent resistor network[J]. Journal of Applied Geophysics, 2018, 159: 135-145.
[54] GRAYVER A V, STREICH R, RITTER O. Three-dimensional parallel distributed inversion of csem data using a direct forward solver[J]. Geophysical Journal International, 2013, 193: 1432-1446.
[55] 刘斌, 李术才, 李树忼, 等. 基于不等式约束的最小二乘法三维电阻率反演及其算法优化[J]. 地球物理学报, 2012, 55(1): 260-268.
[56] QIU M, HUANG F, WANG J, et al. Characteristics of vertical karst development and grouting reinforcement engineering practice of the ordovician top in the feicheng coalfield, china[J]. Carbonates and Evaporites, 2020, 35(78).
[57] 杨镜明, 魏周政, 高晓伟. 高密度电阻率法和瞬变电磁法在煤田采空区勘查及注浆检测中的应用 [J]. 地球物理学进展, 2014, 29(1): 362-369.
[58] XU Z, SUN Y, GAO S, et al. Comprehensive exploration, safety evaluation and grouting of karst collapse columns in the yangjian coalmine of the shanxi province, china[J]. Carbonates and Evaporites, 2021, 36(16).
[59] 李寅初. 基于深度学习的钢套管长电极电法页岩压裂成像监测 [D]. 哈尔滨: 哈尔滨工业大学, 2020.
[60] WILT M J, UM E S, NICHOLS E, et al. Casing integrity mapping using top-casing electrodes and surface-based electromagnetic fields[J]. Geophysics, 2020, 85: E1-E13.
[61] 陶永康, 李思锐. 高强钢筋在混凝土环境中的腐蚀行为 [J]. 腐蚀与防护, 2021, 42(7): 38-41.
[62] 乔艳. 桥梁钢筋腐蚀检测方法探讨 [J]. 工程设备与材料, 2021, 3: 123-124.
[63] 邵加钰. 公路桥梁混凝土中钢筋腐蚀检测方法探讨 [J]. 智能管理, 2021(1): 67-68.

所在学位评定分委会
地球与空间科学系
国内图书分类号
P319.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335938
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
杨立春. 人工高导电体存在条件下的电阻率反演研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930414-杨立春-地球与空间科学(20135KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[杨立春]的文章
百度学术
百度学术中相似的文章
[杨立春]的文章
必应学术
必应学术中相似的文章
[杨立春]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。