中文版 | English
题名

利用超高速碰撞引起的PSP和MAVEN电场天线信号探测宇宙尘埃

其他题名
DETECTION OF COSMIC DUST USING PSP AND MAVEN ELECTRIC FIELD ANTENNA SIGNALS INDUCED BY HYPERVELOCITY IMPACTS
姓名
姓名拼音
WANG Jian
学号
11930417
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
叶生毅
导师单位
地球与空间科学系
论文答辩日期
2022-05-17
论文提交日期
2022-06-18
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

宇宙尘埃携带有关于星系演化、恒星行星系统形成乃至生命起源的重要信息,同时也威胁着航天器的安全。宇宙尘埃与航天器的超高速碰撞会产生快速扩张的等离子体云,扰动航天器电势并产生电场天线信号。利用电场天线探测宇宙尘埃已经在空间探测任务中得到了广泛应用,研究尘埃超高速碰撞产生的电场天线信号可以用来量化空间尘埃环境以及尘埃碰撞风险,具有十分重要的科学意义。

本文通过分析Parker Solar ProbePSP)号航天器在全新环境中的尘埃观测数据,进一步探究尘埃碰撞信号的产生机制。研究发现,单、偶极电场天线对碰撞位置的响应存在差异,可通过分析不同天线信号的特征确定尘埃碰撞发生位置以及等离子体云扩散的方向。飞船电势通过影响碰撞等离子体云中粒子的扩散,进而影响尘埃碰撞信号的形态。统计得到太阳附近尘埃的空间分布特征,总体来说,尘埃碰撞率呈现出随距太阳中心距离减小而增加的趋势。此外,PSP在不同轨道近日点附近观测到的尘埃碰撞率变化趋势存在差异。

其次,本文基于波形互相关的方法对Mars Atmosphere and Volatile EvolutioNMAVEN)号航天器2020年观测到的尘埃碰撞信号进行识别,得到火星附近尘埃的空间分布特征。统计结果显示,在同一纬度区间,北半球的尘埃碰撞率水平普遍比南半球高,这种差异在10°~50° 的中纬度地区表现最为明显。尘埃碰撞计数和尘埃碰撞率均未在火星赤道平面附近呈现出很强的分布,表明火星卫星环尘埃不是MAVEN观测的主要尘埃源。此外,尘埃碰撞主要集中分布在日侧低高度地区,且昏侧的碰撞率高于晨侧。受火星大气等离子体密度和飞船电势影响,尘埃碰撞率水平呈现出随高度降低而升高的变化趋势。

其他摘要

Cosmic dust carries important information about the evolution of galaxies, the formation of stellar and planetary systems and even the origin of life. At the same time, it also threatens the safety of spacecraft. Hypervelocity impacts between cosmic dust and spacecraft will produce rapidly expanding plasma cloud, which will disturb the spacecraft potential and generate signals detected by electric field antennas. Dust detection by electric field antennas has been widely used in space exploration missions. These electric field antenna signals generated by dust hypervelocity impacts can help quantify the dust environment and dust impact risk in space, which is of great scientific significance.

This thesis analyzes the dust observation data of the Parker Solar Probe(PSP)in a new environment to further explore the generation mechanism of dust impact signals. It is found that the monopole and dipole electric field antennas show differences in their response to impact position, and the dust impact location and the plasma cloud expanding direction can be determined by analyzing the signal characteristics of different antennas. The spacecraft potential can affect the morphology of the impact signals by controlling the particle diffusion in the expanding impact plasma cloud. The spatial distribution of the dust near the sun is statistically characterized. By and large, the dust impact rate increases with decreasing distance from the center of the sun. In addition, the dust impact rate profile observed by PSP near perihelion varies in different orbits.

Secondly, based on the waveform cross-correlation method, this thesis identifies the dust impact signals observed by the Mars Atmosphere and Volatile EvolutioN(MAVEN)in 2020, and obtains the spatial distribution characteristics of dust near Mars. Statistical results show that in the same latitude range, the dust impact rate in the northern hemisphere is generally higher than that in the southern hemisphere, and the difference is most obvious in the mid-latitude region of 10°~50°. Neither the dust impact counts nor the impact rate shows a strong distribution near the Martian equatorial plane, suggesting that Mars satellite ring dust is not the main source for MAVEN observations. Moreover, dust impacts are mainly concentrated in the low altitude area on the day side, and the impact rate is higher on the dusk side than the dawn side. Influenced by the Martian atmospheric plasma density and spacecraft potential, the dust impact rate shows a trend of increasing with the decrease of altitude.

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] MANN I. Interstellar Dust in the Solar System [J]. Annual Review of Astronomy and Astrophysics, 2010, 48(1): 173-203.
[2] KOSCHNY D, SOJA R H, ENGRAND C, et al. Interplanetary Dust, Meteoroids, Meteors and Meteorites[J]. Space Science Reviews, 2019, 215(4):1-62.
[3] MANN I, NICOLE, MEYER-VERNET, et al. Dust in the planetary system: Dustinteractions in space plasmas of the solar system [J]. Physics Reports, 2014, 536(1): 1-39.
[4] GRUN E, ZOOK H, BAGUHL M, et al. Ulysses dust measurements near Jupiter [J]. Science, 1992, 257(5076): 1550-1552.
[5] SPAHN F, SCHMIDT J, ALBERS N, et al. Cassini dust measurements at Enceladus and implications for the origin of the E ring[J]. Science, 2006, 311(5766):1416-1418.
[6] PORCO C C, HELFENSTEIN P, THOMAS P C, et al. Cassini Observes the Active South Pole of Enceladus [J]. Science, 2006, 311(5766): 1393-1401.
[7] LIOU J C, ZOOK H A, DERMOTT S F. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles [J]. Icarus, 1996, 124(2): 429-440.
[8] SZALAY J R, POPPE A R, AGARWAL J, et al. Dust Phenomena Relating to Airless Bodies [J]. Space Science Reviews, 2018, 214(5): 1-47.
[9] SPAHN F, SACHSE M, SEIß M, et al. Circumplanetary Dust Populations[J]. Space Science Reviews, 2019, 215(1):1-54.
[10] KLINKRAD H. Space Debris: Models and Risk Analysis[M]. Springer Science & Business Media, 2006.
[11] WRIGHT D. Space Debris [J]. Physics Today, 2007, 60(10): 35-40.
[12] LEINERT C, RICHTER I, PITZ E, et al. The zodiacal light from 1.0 to 0.3 A.U. as observed by the HELIOS space probes [J]. Astronomy & Astrophysics, 1981, 103(1): 177-188.
[13] HILLIER J K, GREEN S F, MCBRIDE N, et al. Interplanetary dust detected by the Cassini CDA Chemical Analyser [J]. Icarus, 2007, 190(2): 643-654.
[14] YE S Y, KURTH W S, HOSPODARSKY G B, et al. Dust Observations by the Radio and Plasma Wave Science Instrument During Cassini's Grand Finale [J]. Geophysical Research Letters, 2018, 45(19): 10101-10109.
[15] AUBIER M G, MEYER-VERNET N, PEDERSEN B M. Shot noise from grain and particle impacts in Saturn's ring plane [J]. Geophysical Research Letters, 2012, 10(1): 5-8.
[16] GURNETT D A, GRÜN E, GALLAGHER D, et al. Micron-sized particles detected near Saturn by the Voyager plasma wave instrument [J]. Icarus, 1983, 53(2): 236-254.
[17] MEYER-VERNET N. Detecting Dust with Electric Sensors in Planetary Rings, Comets and Interplanetary Space[C]//Spacecraft Charging Technology, 2001, 476:635.
[18] VAVERKA J, NAKAMURA T, KERO J, et al. Comparison of Dust Impact and Solitary Wave Signatures Detected by Multiple Electric Field Antennas Onboard the MMS Spacecraft[J]. Journal of Geophysical Research Space Physics, 2018, 123(8):6119-6129.
[19] 汤靖师,程昊文.空间碎片问题的起源,现状和发展[J].物理,2021,50(5):317-323.
[20] 张庆明,黄风雷.空间碎片环境及其危害[J].中国安全科学学报,1996,6(5):15-20.
[21] 刘先曙.空间尘埃比空间碎片对卫星的威胁更大[J].科技导报,2001,(04):51-51.
[22] 李怡勇 , 沈怀荣 , 李 智 . 空间碎片环境危害及其对策 [J]. 导弹与航天运载技术,2008,(6):31-35.
[23] 李春来,欧阳自远,都亨.空间碎片与空间环境[J].第四纪研究,2002,22(6):540-551.
[24] 朱新波,谢攀,徐亮,等.“天问一号”火星环绕器总体设计综述[J].航天返回与遥感,2021,42(3):1-12.
[25] GURNETT D A, KURTH W S, SCARF F L, et al. Micron-sized particle impacts detected near Uranus by the Voyager 2 Plasma Wave Instrument[J]. Journal of Geophysical Research, 1987, 92(A13):14959-14968.
[26] GURNETT D A, KURTH W S, GRANROTH L J, et al. Micron-sized particles detected near Neptune by the Voyager 2 plasma wave instrument[J]. Journal of Geophysical Research: Space Physics, 1991, 96(S01):19177-19186.
[27] GURNETT D A, ANSHER J A, KURTH W S, et al. Micron-Sized Dust Particles Detected in the Outer Solar System by the Voyager 1 and 2 Plasma Wave Instruments[J]. Geophysical Research Letters, 1997, 24(24):3125-3128.
[28] BALE S D, ULLRICH R, GOETZ K, et al. The Electric Antennas for the STEREO/WAVES Experiment [J]. Space Science Reviews, 2008, 136(1): 529-547.
[29] BOUGERET J L, GOETZ K, KAISER M L, et al. S/WAVES: The Radio and Plasma Wave Investigation ontheSTEREO Mission [J]. Space Science Reviews, 2008, 136(1): 487-528.
[30] MEYER-VERNET N, MAKSIMOVIC M, CZECHOWSKI A, et al. Dust Detection by the Wave Instrument on STEREO: Nanoparticles Picked up by the Solar Wind? [J]. Solar Physics, 2009, 256(1): 463-474.
[31] BELHEOUANE S, ZASLAVSKY A, MEYER-VERNET N, et al. Detection of Interstellar Dust with STEREO/WAVES at 1 AU [J]. Solar Physics, 2012, 281(1): 501-506.
[32] ZASLAVSKY A, MEYER-VERNET N, MANN I, et al. Interplanetary dust detection by radio antennas: Mass calibration and fluxes measured by STEREO/WAVES[J]. Journal of Geophysical Research Atmospheres, 2012, 117(A5):1-13.
[33] BOUGERET J L, KAISER M L, KELLOGG P J, et al. WAVES: The radio and plasma wave investigation on the wind spacecraft [J]. Space Science Reviews, 1995, 71(1): 231-263.
[34] MALASPINA D, HORANYI M, ZASLAVSKY A, et al. Interplanetary and interstellar dust observed by the Wind/WAVES electric field instrument[J]. Geophysical Research Letters, 2014, 41(2):266-272.
[35] MEYER-VERNET N, MONCUQUET M, ISSAUTIER K, et al. The importance of monopole antennas for dust observations: Why Wind/WAVES does not detect nanodust[J]. Geophysical Research Letters, 2014, 41(8):2716-2720.
[36] MANN I, NOUZÁK L, VAVERKA J, et al. Dust observations with antenna measurements and its prospects for observations with Parker Solar Probe and Solar Orbiter[J]. Annales Geophysicae, 2019, 37(6):1121-1140.
[37] MALASPINA D M, WILSON L B. A database of interplanetary and interstellar dust detected by the Wind spacecraft [J]. Journal of Geophysical Research: Space Physics, 2016, 121(10): 9369-9377.
[38] BURCH J L, MOORE T E, TORBERT R B, et al. Magnetospheric Multiscale Overview and Science Objectives [J]. Space Science Reviews, 2016, 199(1): 5-21.
[39] LINDQVIST P A, OLSSON G, TORBERT R B, et al. The Spin-Plane Double Probe Electric Field Instrument for MMS [J]. Space Science Reviews, 2016, 199(1): 137-165.
[40] TORBERT R B, RUSSELL C T, MAGNES W, et al. The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products [J]. Space Science Reviews, 2016, 199(1-4): 105-135.
[41] VAVERKA J, PAVL J, NOUZÁK L, et al. One-Year Analysis of Dust Impact-Like Events Onto the MMS Spacecraft[J]. Journal of Geophysical Research: Space Physics, 2019, 124(11):8179-8190.
[42] VAVERKA J, PAVLU J, NOUZÁK L, et al. Ion Cloud Expansion after Hyper-velocity Dust Impacts Detected by the Magnetospheric Multiscale Mission Electric Probes in the Dipole Configuration[J]. The Astrophysical Journal, 2021, 921(2): 127-134.
[43] ANDERSSON L, ERGUN R E, DELORY G T, et al. The Langmuir Probe and Waves (LPW) Instrument for MAVEN [J]. Space Science Reviews, 2015, 195(1-4): 173-198.
[44] ANDREWS D J, ANDERSSON L, DELORY G T, et al. Ionospheric plasma density variations observed at Mars by MAVEN/LPW [J]. Geophysical Research Letters, 2015, 42(21): 8862-8869.
[45] ANDERSSON L, WEBER T D, MALASPINA D, et al. Dust observations at orbital altitudes surrounding Mars [J]. Science, 2015, 350(6261). :aad0398.
[46] MATSON D L, SPILKER L J, LEBRETON J P. The Cassini/Huygens Mission to the Saturnian System [J]. Space Science Reviews, 2002, 104(1-4): 1-58.
[47] DOUGHERTY M K, ESPOSITO L W, KRIMIGIS S M. Saturn from Cassini￾Huygens[M]. Springer Netherlands, 2009.
[48] GURNETT D A, KURTH W S, KIRCHNER D L, et al. The Cassini Radio and Plasma Wave Investigation[J]. Springer Netherlands, 2004, 114(1-4):395-463.
[49] SPENCER J, R., PEARL J C. Cassini encounters Enceladus: background and the discovery of a south polar hot spot[J]. Science, 2006, 311(5766):1401-1405.
[50] YE S Y, GURNETT D A, KURTH W S, et al. Electron density inside Enceladus plume inferred from plasma oscillations excited by dust impacts [J]. Journal of Geophysical Research: Space Physics, 2014, 119(5): 3373-3380.
[51] MEYER-VERNET N, MONCUQUET M, ISSAUTIER K, et al. Frequency range of dust detection in space with radio and plasma wave receivers: Theory and application to interplanetary nanodust impacts on Cassini [J]. Journal of Geophysical Research, 2017, 122(1): 8-22.
[52] YE S Y, GURNETT D A, KURTH W S, et al. Properties of dust particles near Saturn inferred from voltage pulses induced by dust impacts on Cassini spacecraft [J]. Journal of Geophysical Research Space Physics, 2014, 119(8): 6294-6312.
[53] YE S Y, GURNETT D A, KURTH W S. In-situ measurements of Saturn's dusty rings based on dust impact signals detected by Cassini RPWS [J]. Icarus, 2016: 51-61.
[54] YE S Y, VAVERKA J, NOUZÁK L, et al. Understanding Cassini RPWS Antenna Signals Triggered by Dust Impacts[J]. Geophysical Research Letters, 2019, 46(20):10941-10950.
[55] BALE S D, GOETZ K, HARVEY P, et al. The FIELDS Instrument Suite for Solar Probe Plus[J]. Space Science Reviews, 2016, 204(1-4):49-82.
[56] MOZER F S, AGAPITOV O V, BALE S D, et al. Time Domain Structures and Dust in the Solar Vicinity: Parker Solar Probe Observations [J]. The Astrophysical Journal Supplement Series, 2020, 246(2): 50.
[57] SZALAY J R, POKORNÝ P, BALE S D, et al. The Near-Sun Dust Environment: Initial Observations from Parker Solar Probe[J]. The Astrophysical Journal Supplement Series, 2020, 246(2):27.
[58] MALASPINA D M, SZALAY J R, POKORNÝ P, et al. In Situ Observations of Interplanetary Dust Variability in the Inner Heliosphere[J]. The Astrophysical Journal, 2020, 892(2):115.
[59] PAGE B, BALE S D, BONNELL J W, et al. Examining Dust Directionality with the Parker Solar Probe FIELDS Instrument[J]. The Astrophysical Journal Supplement Series, 2020, 246(2):51-63.
[60] SZALAY J R, POKORNY P, MALASPINA D M, et al. Collisional Evolution of the Inner Zodiacal Cloud [J]. The Planetary Science Journal, 2021, 2(5): 185.
[61] PUSACK A, MALASPINA D M, SZALAY J R, et al. Dust Directionality and an Anomalous Interplanetary Dust Population Detected by the Parker Solar Probe[J]. The Planetary Science Journal, 2021, 2(5):186.
[62] MALASPINA D M, STENBORG G, MEHOKE D, et al. Clouds of Spacecraft Debris Liberated by Hypervelocity Dust Impacts on Parker Solar Probe[J]. The Astrophysical Journal, 2022, 925(1):27.
[63] HE J, CUI B, YANG L, et al. The Encounter of the Parker Solar Probe and a Comet-like Object Near the Sun: Model Predictions and Measurements [J]. The Astrophysical Journal, 2021, 910(1):7.
[64] COLLETTE A, GRüN E, MALASPINA D, et al. Micrometeoroid impact charge yield for common spacecraft materials [J]. Journal of Geophysical Research Space Physics, 2015, 119(8): 6019-6026.
[65] COLLETTE A, MEYER G, MALASPINA D, et al. Laboratory investigation of antenna signals from dust impacts on spacecraft [J]. Journal of Geophysical ResearchSpace Physics, 2015, 120(7): 5298-5305.
[66] YE S Y, KURTH W S, HOSPODARSKY G B, et al. Dust detection in space using the monopole and dipole electric field antennas [J]. Journal of Geophysical Research Space Physics, 2016, 121(12): 11964-11972.
[67] NOUZÁK L, HSU S, MALASPINA D, et al. Laboratory modeling of dust impact detection by the Cassini spacecraft[J]. Planetary & Space Science, 2017, 156:85-91.
[68] FLETCHER A, CLOSE S, MATHIAS D. Simulating plasma production from hypervelocity impacts [J]. Physics of Plasmas, 2015, 22(9): 294-1013.
[69] LI J, SONG W, NING J. Theoretical and numerical predictions of hypervelocity impact-generated plasma[J]. Physics of Plasmas, 2014, 21(8):082112.
[70] SONG W, LI J, NING J. Characteristics of plasma generated by hypervelocity impact[J]. Physics of Plasmas, 2013, 20(9):093501.
[71] SONG W, LV Y, LI J, et al. Influence of impact conditions on plasma generation during hypervelocity impact by aluminum projectile [J]. Physics of Plasmas, 2016, 23(7): 1861-1869.
[72] PANTELLINI F, LANDI S, ZASLAVSKY A, et al. On the unconstrained expansion of a spherical plasma cloud turning collisionless: case of a cloud generated by a nanometre dust grain impact on an uncharged target in space[J]. Plasma Physics and Controlled Fusion, 2012, 54(4):045005.
[73] ZASLAVSKY A. Floating potential perturbations due to micrometeoroid impacts: Theory and application to S/WAVES data [J]. Journal of Geophysical Research Space Physics, 2015, 120(2): 855-867.
[74] VAVERKA J, PELLINEN-WANNBERG A, KERO J, et al. Potential of Earth Orbiting Spacecraft Influenced by Meteoroid Hypervelocity Impacts[J]. IEEE Transactions on Plasma Science, 2017,45(8):2048-2055.
[75] SHEN M M, STERNOVSKY Z, HORÁNYI M, et al. Laboratory Study of Antenna Signals Generated by Dust Impacts on Spacecraft[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4):e2020JA028965.
[76] LAI H R, RUSSELL C T. Nanodust released in interplanetary collisions [J]. Planetary and Space Science, 2017, 156(jul.): 2-6.
[77] MANN I, KIMURA H, BIESECKER D A, et al. Dust Near The Sun [J]. Space Science Reviews, 2004, 110(3-4): 269-305.
[78] ZOOK H A, BERG O E. A source for hyperbolic cosmic dust particles [J]. Planetary and Space Science, 1975, 23(1): 183-203.
[79] BURNS J A, LAMY P L, SOTER S. Radiation forces on small particles in the Solar System: A re-consideration [J]. Icarus, 2014, 232: 263-265.
[80] CZECHOWSKI A, MANN I. Formation and acceleration of nano dust in the inner heliosphere[J]. The Astrophysical Journal, 2010, 714(1):89-99.
[81] O'BRIEN L, JUHÁSZ A, STERNOVSKY Z, et al. Effects of interplanetary coronal mass ejections on the transport of nano-dust generated in the inner solar system[J]. Planetary and Space Science, 2018, 156:7-16.
[82] JUHÁSZ A, HORÁNYI M. Dynamics and distribution of nano-dust particles in the inner solar system[J]. Geophysical Research Letters, 2013, 40(11):2500-2504.
[83] MANN I, KRIVOV A, KIMURA H. Dust Cloud near the Sun [J]. Icarus, 2000, 146(2): 568-582.
[84] 赖海容, 贾英东, 何建森. 行星际尘埃的探测与研究进展 [J]. 地球与行星物理论评, 2021, 52(5): 11.
[85] GUSTAFSON B. Physics of zodiacal dust[J]. Annual Review of Earth and Planetary Sciences, 1994, 22:553-595.
[86] ROBERTSON H P. Dynamical effects of radiation in the solar system [J]. Monthly Notices of the Royal Astronomical Society, 1936, 97(1): 0423-0438.
[87] GURNETT D A. Principles of Space Plasma Wave Instrument Design[M]. American Geophysical Union, 1998.
[88] RUCKER H O, MACHER W, MANNING R, et al. Cassini model rheometry [J]. Radio Science, 1996, 31(6): 1299-1311.
[89] SAMPL M. Fundamentals of numerical analysis: spaceborne radio astronomy antennas [J]. E & I Elektrotechnik Und Informationstechnik, 2011, 128(7-8): 289- 296.
[90] MEYER-VERNET N. Flip-flop of electric potential of dust grains in space [J]. Astronomy & Astrophysics, 1981, 105: 98-106.
[91] WHIPPLE, C E. Potentials of surfaces in space [J]. Reports on Progress in Physics, 2000, 44(11): 1197-1250.
[92] VAVERKA J, RICHTEROVA I, PAVLU J, et al. Numerical Calculation of an Equilibrium Dust Grain Potential in Lunar Environment[J]. IEEE Transactions on Plasma Science, 2013, 41(4):740-744.
[93] TORKAR K, RIEDLER W, ESCOUBET C P, et al. Active spacecraft potential control for Cluster-implementation and first results[J]. Annales Geophysicae, 2001, 19(10/12):1289-1302.
[94] VAVERKA J, RICHTEROVÁ I, PAVLŮ J, et al. Lunar surface and dust grain potentials during the earth's magnetosphere crossing[J]. Astrophysical Journal, 2016, 825(2):133.
[95] BROWN P, SPALDING R E, REVELLE D O, et al. The flux of small near-Earth objects colliding with the Earth[J]. Nature, 2002, 420(6913):294-296.
[96] CLOSE S, BROWN P, CAMPBELL-BROWN M, et al. Meteor head echo radar data: Mass–velocity selection effects[J]. Icarus, 2007, 186(2):547-556.
[97] CHEN F F. Introduction to Plasma Physics and Controlled Fusion[M]. Springer International Publishing, 2016.
[98] GURNETT D A, BHATTACHARJEE A. A introduction to plasma physics: with space and laboratory applications[M].Cambridge university press, 2005.
[99] TARANTINO P, GOEL A, CORSO A, et al. An electrostatic method to model the expansion of hypervelocity impact plasma on positively biased surfaces[J]. Physics of Plasmas, 2018, 25(9):092103.
[100] O’SHEA E, STERNOVSKY Z, MALASPINA D M. Interpreting Dust Impact Signals Detected by the STEREO Spacecraft[J]. Journal of Geophysical Research: SpacePhysics, 2017, 122(12):11864-11873.
[101] BALE S D, GOETZ K, BONNELL J, et al. Dust impact voltage signatures on Parker Solar Probe: influence of spacecraft floating potential[J]. arXiv preprint arXiv:2006.00776,2020.
[102] FOX N J, VELLI M C, BALE S D, et al. The Solar Probe Plus Mission: Humanity’s First Visit to Our Star [J]. Space Science Reviews, 2015, 204(1-4): 7-48.
[103] YE S Y, AVERKAMP T F, KURTH W S, et al. Juno Waves Detection of Dust Impacts Near Jupiter[J]. Journal of Geophysical Research: Planets, 2020, 125(6):e2019JE006367.
[104] MCCOMAS D J, VELLI M, LEWIS W S, et al. Understanding coronal heating and solar wind acceleration: Case for in situ near-Sun measurements[J]. Reviews of Geophysics, 2007, 45(1):485-493.
[105] WEBER T, ANDERSSON L, MALASPINA D, et al. Dust Observations Using Common Mode Measurements from the Langmuir Probe and Waves Instrument on the MAVEN Mission[C]//Lunar and Planetary Science Conference. 2015(1832):2431.
[106] 邵文权,乔妮,王建波.基于波形互相关系数的变压器励磁涌流识别方法[J].电力系统保护与控制,2015,43(23):14-20.
[107] PICKETT J S, KURTH W S, GURNETT D A, et al. Electrostatic solitary waves observed at Saturn by Cassini inside 10Rs and near Enceladus[J]. Journal of Geophysical Research: Space Physics, 2015, 120(8):6569-6580.
[108] KELLOGG P J, GOETZ K, MONSON S J. Dust impact signals on the wind spacecraft[J]. Journal of Geophysical Research: Space Physics, 2016, 121(2):966-991.
[109] ZAKHAROV A, HORANYI M, LEE P, et al. Dust at the Martian moons and in the circummartian space[J]. Planetary and Space Science, 2014, 102:171-175.
[110] HAMILTON D P. The Asymmetric Time-Variable Rings of Mars [J]. Icarus, 1996, 119(1): 153-172.

所在学位评定分委会
地球与空间科学系
国内图书分类号
P18
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335939
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
王健. 利用超高速碰撞引起的PSP和MAVEN电场天线信号探测宇宙尘埃[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930417-王健-地球与空间科学系(23890KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王健]的文章
百度学术
百度学术中相似的文章
[王健]的文章
必应学术
必应学术中相似的文章
[王健]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。