[1] MANN I. Interstellar Dust in the Solar System [J]. Annual Review of Astronomy and Astrophysics, 2010, 48(1): 173-203.
[2] KOSCHNY D, SOJA R H, ENGRAND C, et al. Interplanetary Dust, Meteoroids, Meteors and Meteorites[J]. Space Science Reviews, 2019, 215(4):1-62.
[3] MANN I, NICOLE, MEYER-VERNET, et al. Dust in the planetary system: Dustinteractions in space plasmas of the solar system [J]. Physics Reports, 2014, 536(1): 1-39.
[4] GRUN E, ZOOK H, BAGUHL M, et al. Ulysses dust measurements near Jupiter [J]. Science, 1992, 257(5076): 1550-1552.
[5] SPAHN F, SCHMIDT J, ALBERS N, et al. Cassini dust measurements at Enceladus and implications for the origin of the E ring[J]. Science, 2006, 311(5766):1416-1418.
[6] PORCO C C, HELFENSTEIN P, THOMAS P C, et al. Cassini Observes the Active South Pole of Enceladus [J]. Science, 2006, 311(5766): 1393-1401.
[7] LIOU J C, ZOOK H A, DERMOTT S F. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles [J]. Icarus, 1996, 124(2): 429-440.
[8] SZALAY J R, POPPE A R, AGARWAL J, et al. Dust Phenomena Relating to Airless Bodies [J]. Space Science Reviews, 2018, 214(5): 1-47.
[9] SPAHN F, SACHSE M, SEIß M, et al. Circumplanetary Dust Populations[J]. Space Science Reviews, 2019, 215(1):1-54.
[10] KLINKRAD H. Space Debris: Models and Risk Analysis[M]. Springer Science & Business Media, 2006.
[11] WRIGHT D. Space Debris [J]. Physics Today, 2007, 60(10): 35-40.
[12] LEINERT C, RICHTER I, PITZ E, et al. The zodiacal light from 1.0 to 0.3 A.U. as observed by the HELIOS space probes [J]. Astronomy & Astrophysics, 1981, 103(1): 177-188.
[13] HILLIER J K, GREEN S F, MCBRIDE N, et al. Interplanetary dust detected by the Cassini CDA Chemical Analyser [J]. Icarus, 2007, 190(2): 643-654.
[14] YE S Y, KURTH W S, HOSPODARSKY G B, et al. Dust Observations by the Radio and Plasma Wave Science Instrument During Cassini's Grand Finale [J]. Geophysical Research Letters, 2018, 45(19): 10101-10109.
[15] AUBIER M G, MEYER-VERNET N, PEDERSEN B M. Shot noise from grain and particle impacts in Saturn's ring plane [J]. Geophysical Research Letters, 2012, 10(1): 5-8.
[16] GURNETT D A, GRÜN E, GALLAGHER D, et al. Micron-sized particles detected near Saturn by the Voyager plasma wave instrument [J]. Icarus, 1983, 53(2): 236-254.
[17] MEYER-VERNET N. Detecting Dust with Electric Sensors in Planetary Rings, Comets and Interplanetary Space[C]//Spacecraft Charging Technology, 2001, 476:635.
[18] VAVERKA J, NAKAMURA T, KERO J, et al. Comparison of Dust Impact and Solitary Wave Signatures Detected by Multiple Electric Field Antennas Onboard the MMS Spacecraft[J]. Journal of Geophysical Research Space Physics, 2018, 123(8):6119-6129.
[19] 汤靖师,程昊文.空间碎片问题的起源,现状和发展[J].物理,2021,50(5):317-323.
[20] 张庆明,黄风雷.空间碎片环境及其危害[J].中国安全科学学报,1996,6(5):15-20.
[21] 刘先曙.空间尘埃比空间碎片对卫星的威胁更大[J].科技导报,2001,(04):51-51.
[22] 李怡勇 , 沈怀荣 , 李 智 . 空间碎片环境危害及其对策 [J]. 导弹与航天运载技术,2008,(6):31-35.
[23] 李春来,欧阳自远,都亨.空间碎片与空间环境[J].第四纪研究,2002,22(6):540-551.
[24] 朱新波,谢攀,徐亮,等.“天问一号”火星环绕器总体设计综述[J].航天返回与遥感,2021,42(3):1-12.
[25] GURNETT D A, KURTH W S, SCARF F L, et al. Micron-sized particle impacts detected near Uranus by the Voyager 2 Plasma Wave Instrument[J]. Journal of Geophysical Research, 1987, 92(A13):14959-14968.
[26] GURNETT D A, KURTH W S, GRANROTH L J, et al. Micron-sized particles detected near Neptune by the Voyager 2 plasma wave instrument[J]. Journal of Geophysical Research: Space Physics, 1991, 96(S01):19177-19186.
[27] GURNETT D A, ANSHER J A, KURTH W S, et al. Micron-Sized Dust Particles Detected in the Outer Solar System by the Voyager 1 and 2 Plasma Wave Instruments[J]. Geophysical Research Letters, 1997, 24(24):3125-3128.
[28] BALE S D, ULLRICH R, GOETZ K, et al. The Electric Antennas for the STEREO/WAVES Experiment [J]. Space Science Reviews, 2008, 136(1): 529-547.
[29] BOUGERET J L, GOETZ K, KAISER M L, et al. S/WAVES: The Radio and Plasma Wave Investigation ontheSTEREO Mission [J]. Space Science Reviews, 2008, 136(1): 487-528.
[30] MEYER-VERNET N, MAKSIMOVIC M, CZECHOWSKI A, et al. Dust Detection by the Wave Instrument on STEREO: Nanoparticles Picked up by the Solar Wind? [J]. Solar Physics, 2009, 256(1): 463-474.
[31] BELHEOUANE S, ZASLAVSKY A, MEYER-VERNET N, et al. Detection of Interstellar Dust with STEREO/WAVES at 1 AU [J]. Solar Physics, 2012, 281(1): 501-506.
[32] ZASLAVSKY A, MEYER-VERNET N, MANN I, et al. Interplanetary dust detection by radio antennas: Mass calibration and fluxes measured by STEREO/WAVES[J]. Journal of Geophysical Research Atmospheres, 2012, 117(A5):1-13.
[33] BOUGERET J L, KAISER M L, KELLOGG P J, et al. WAVES: The radio and plasma wave investigation on the wind spacecraft [J]. Space Science Reviews, 1995, 71(1): 231-263.
[34] MALASPINA D, HORANYI M, ZASLAVSKY A, et al. Interplanetary and interstellar dust observed by the Wind/WAVES electric field instrument[J]. Geophysical Research Letters, 2014, 41(2):266-272.
[35] MEYER-VERNET N, MONCUQUET M, ISSAUTIER K, et al. The importance of monopole antennas for dust observations: Why Wind/WAVES does not detect nanodust[J]. Geophysical Research Letters, 2014, 41(8):2716-2720.
[36] MANN I, NOUZÁK L, VAVERKA J, et al. Dust observations with antenna measurements and its prospects for observations with Parker Solar Probe and Solar Orbiter[J]. Annales Geophysicae, 2019, 37(6):1121-1140.
[37] MALASPINA D M, WILSON L B. A database of interplanetary and interstellar dust detected by the Wind spacecraft [J]. Journal of Geophysical Research: Space Physics, 2016, 121(10): 9369-9377.
[38] BURCH J L, MOORE T E, TORBERT R B, et al. Magnetospheric Multiscale Overview and Science Objectives [J]. Space Science Reviews, 2016, 199(1): 5-21.
[39] LINDQVIST P A, OLSSON G, TORBERT R B, et al. The Spin-Plane Double Probe Electric Field Instrument for MMS [J]. Space Science Reviews, 2016, 199(1): 137-165.
[40] TORBERT R B, RUSSELL C T, MAGNES W, et al. The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products [J]. Space Science Reviews, 2016, 199(1-4): 105-135.
[41] VAVERKA J, PAVL J, NOUZÁK L, et al. One-Year Analysis of Dust Impact-Like Events Onto the MMS Spacecraft[J]. Journal of Geophysical Research: Space Physics, 2019, 124(11):8179-8190.
[42] VAVERKA J, PAVLU J, NOUZÁK L, et al. Ion Cloud Expansion after Hyper-velocity Dust Impacts Detected by the Magnetospheric Multiscale Mission Electric Probes in the Dipole Configuration[J]. The Astrophysical Journal, 2021, 921(2): 127-134.
[43] ANDERSSON L, ERGUN R E, DELORY G T, et al. The Langmuir Probe and Waves (LPW) Instrument for MAVEN [J]. Space Science Reviews, 2015, 195(1-4): 173-198.
[44] ANDREWS D J, ANDERSSON L, DELORY G T, et al. Ionospheric plasma density variations observed at Mars by MAVEN/LPW [J]. Geophysical Research Letters, 2015, 42(21): 8862-8869.
[45] ANDERSSON L, WEBER T D, MALASPINA D, et al. Dust observations at orbital altitudes surrounding Mars [J]. Science, 2015, 350(6261). :aad0398.
[46] MATSON D L, SPILKER L J, LEBRETON J P. The Cassini/Huygens Mission to the Saturnian System [J]. Space Science Reviews, 2002, 104(1-4): 1-58.
[47] DOUGHERTY M K, ESPOSITO L W, KRIMIGIS S M. Saturn from CassiniHuygens[M]. Springer Netherlands, 2009.
[48] GURNETT D A, KURTH W S, KIRCHNER D L, et al. The Cassini Radio and Plasma Wave Investigation[J]. Springer Netherlands, 2004, 114(1-4):395-463.
[49] SPENCER J, R., PEARL J C. Cassini encounters Enceladus: background and the discovery of a south polar hot spot[J]. Science, 2006, 311(5766):1401-1405.
[50] YE S Y, GURNETT D A, KURTH W S, et al. Electron density inside Enceladus plume inferred from plasma oscillations excited by dust impacts [J]. Journal of Geophysical Research: Space Physics, 2014, 119(5): 3373-3380.
[51] MEYER-VERNET N, MONCUQUET M, ISSAUTIER K, et al. Frequency range of dust detection in space with radio and plasma wave receivers: Theory and application to interplanetary nanodust impacts on Cassini [J]. Journal of Geophysical Research, 2017, 122(1): 8-22.
[52] YE S Y, GURNETT D A, KURTH W S, et al. Properties of dust particles near Saturn inferred from voltage pulses induced by dust impacts on Cassini spacecraft [J]. Journal of Geophysical Research Space Physics, 2014, 119(8): 6294-6312.
[53] YE S Y, GURNETT D A, KURTH W S. In-situ measurements of Saturn's dusty rings based on dust impact signals detected by Cassini RPWS [J]. Icarus, 2016: 51-61.
[54] YE S Y, VAVERKA J, NOUZÁK L, et al. Understanding Cassini RPWS Antenna Signals Triggered by Dust Impacts[J]. Geophysical Research Letters, 2019, 46(20):10941-10950.
[55] BALE S D, GOETZ K, HARVEY P, et al. The FIELDS Instrument Suite for Solar Probe Plus[J]. Space Science Reviews, 2016, 204(1-4):49-82.
[56] MOZER F S, AGAPITOV O V, BALE S D, et al. Time Domain Structures and Dust in the Solar Vicinity: Parker Solar Probe Observations [J]. The Astrophysical Journal Supplement Series, 2020, 246(2): 50.
[57] SZALAY J R, POKORNÝ P, BALE S D, et al. The Near-Sun Dust Environment: Initial Observations from Parker Solar Probe[J]. The Astrophysical Journal Supplement Series, 2020, 246(2):27.
[58] MALASPINA D M, SZALAY J R, POKORNÝ P, et al. In Situ Observations of Interplanetary Dust Variability in the Inner Heliosphere[J]. The Astrophysical Journal, 2020, 892(2):115.
[59] PAGE B, BALE S D, BONNELL J W, et al. Examining Dust Directionality with the Parker Solar Probe FIELDS Instrument[J]. The Astrophysical Journal Supplement Series, 2020, 246(2):51-63.
[60] SZALAY J R, POKORNY P, MALASPINA D M, et al. Collisional Evolution of the Inner Zodiacal Cloud [J]. The Planetary Science Journal, 2021, 2(5): 185.
[61] PUSACK A, MALASPINA D M, SZALAY J R, et al. Dust Directionality and an Anomalous Interplanetary Dust Population Detected by the Parker Solar Probe[J]. The Planetary Science Journal, 2021, 2(5):186.
[62] MALASPINA D M, STENBORG G, MEHOKE D, et al. Clouds of Spacecraft Debris Liberated by Hypervelocity Dust Impacts on Parker Solar Probe[J]. The Astrophysical Journal, 2022, 925(1):27.
[63] HE J, CUI B, YANG L, et al. The Encounter of the Parker Solar Probe and a Comet-like Object Near the Sun: Model Predictions and Measurements [J]. The Astrophysical Journal, 2021, 910(1):7.
[64] COLLETTE A, GRüN E, MALASPINA D, et al. Micrometeoroid impact charge yield for common spacecraft materials [J]. Journal of Geophysical Research Space Physics, 2015, 119(8): 6019-6026.
[65] COLLETTE A, MEYER G, MALASPINA D, et al. Laboratory investigation of antenna signals from dust impacts on spacecraft [J]. Journal of Geophysical ResearchSpace Physics, 2015, 120(7): 5298-5305.
[66] YE S Y, KURTH W S, HOSPODARSKY G B, et al. Dust detection in space using the monopole and dipole electric field antennas [J]. Journal of Geophysical Research Space Physics, 2016, 121(12): 11964-11972.
[67] NOUZÁK L, HSU S, MALASPINA D, et al. Laboratory modeling of dust impact detection by the Cassini spacecraft[J]. Planetary & Space Science, 2017, 156:85-91.
[68] FLETCHER A, CLOSE S, MATHIAS D. Simulating plasma production from hypervelocity impacts [J]. Physics of Plasmas, 2015, 22(9): 294-1013.
[69] LI J, SONG W, NING J. Theoretical and numerical predictions of hypervelocity impact-generated plasma[J]. Physics of Plasmas, 2014, 21(8):082112.
[70] SONG W, LI J, NING J. Characteristics of plasma generated by hypervelocity impact[J]. Physics of Plasmas, 2013, 20(9):093501.
[71] SONG W, LV Y, LI J, et al. Influence of impact conditions on plasma generation during hypervelocity impact by aluminum projectile [J]. Physics of Plasmas, 2016, 23(7): 1861-1869.
[72] PANTELLINI F, LANDI S, ZASLAVSKY A, et al. On the unconstrained expansion of a spherical plasma cloud turning collisionless: case of a cloud generated by a nanometre dust grain impact on an uncharged target in space[J]. Plasma Physics and Controlled Fusion, 2012, 54(4):045005.
[73] ZASLAVSKY A. Floating potential perturbations due to micrometeoroid impacts: Theory and application to S/WAVES data [J]. Journal of Geophysical Research Space Physics, 2015, 120(2): 855-867.
[74] VAVERKA J, PELLINEN-WANNBERG A, KERO J, et al. Potential of Earth Orbiting Spacecraft Influenced by Meteoroid Hypervelocity Impacts[J]. IEEE Transactions on Plasma Science, 2017,45(8):2048-2055.
[75] SHEN M M, STERNOVSKY Z, HORÁNYI M, et al. Laboratory Study of Antenna Signals Generated by Dust Impacts on Spacecraft[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4):e2020JA028965.
[76] LAI H R, RUSSELL C T. Nanodust released in interplanetary collisions [J]. Planetary and Space Science, 2017, 156(jul.): 2-6.
[77] MANN I, KIMURA H, BIESECKER D A, et al. Dust Near The Sun [J]. Space Science Reviews, 2004, 110(3-4): 269-305.
[78] ZOOK H A, BERG O E. A source for hyperbolic cosmic dust particles [J]. Planetary and Space Science, 1975, 23(1): 183-203.
[79] BURNS J A, LAMY P L, SOTER S. Radiation forces on small particles in the Solar System: A re-consideration [J]. Icarus, 2014, 232: 263-265.
[80] CZECHOWSKI A, MANN I. Formation and acceleration of nano dust in the inner heliosphere[J]. The Astrophysical Journal, 2010, 714(1):89-99.
[81] O'BRIEN L, JUHÁSZ A, STERNOVSKY Z, et al. Effects of interplanetary coronal mass ejections on the transport of nano-dust generated in the inner solar system[J]. Planetary and Space Science, 2018, 156:7-16.
[82] JUHÁSZ A, HORÁNYI M. Dynamics and distribution of nano-dust particles in the inner solar system[J]. Geophysical Research Letters, 2013, 40(11):2500-2504.
[83] MANN I, KRIVOV A, KIMURA H. Dust Cloud near the Sun [J]. Icarus, 2000, 146(2): 568-582.
[84] 赖海容, 贾英东, 何建森. 行星际尘埃的探测与研究进展 [J]. 地球与行星物理论评, 2021, 52(5): 11.
[85] GUSTAFSON B. Physics of zodiacal dust[J]. Annual Review of Earth and Planetary Sciences, 1994, 22:553-595.
[86] ROBERTSON H P. Dynamical effects of radiation in the solar system [J]. Monthly Notices of the Royal Astronomical Society, 1936, 97(1): 0423-0438.
[87] GURNETT D A. Principles of Space Plasma Wave Instrument Design[M]. American Geophysical Union, 1998.
[88] RUCKER H O, MACHER W, MANNING R, et al. Cassini model rheometry [J]. Radio Science, 1996, 31(6): 1299-1311.
[89] SAMPL M. Fundamentals of numerical analysis: spaceborne radio astronomy antennas [J]. E & I Elektrotechnik Und Informationstechnik, 2011, 128(7-8): 289- 296.
[90] MEYER-VERNET N. Flip-flop of electric potential of dust grains in space [J]. Astronomy & Astrophysics, 1981, 105: 98-106.
[91] WHIPPLE, C E. Potentials of surfaces in space [J]. Reports on Progress in Physics, 2000, 44(11): 1197-1250.
[92] VAVERKA J, RICHTEROVA I, PAVLU J, et al. Numerical Calculation of an Equilibrium Dust Grain Potential in Lunar Environment[J]. IEEE Transactions on Plasma Science, 2013, 41(4):740-744.
[93] TORKAR K, RIEDLER W, ESCOUBET C P, et al. Active spacecraft potential control for Cluster-implementation and first results[J]. Annales Geophysicae, 2001, 19(10/12):1289-1302.
[94] VAVERKA J, RICHTEROVÁ I, PAVLŮ J, et al. Lunar surface and dust grain potentials during the earth's magnetosphere crossing[J]. Astrophysical Journal, 2016, 825(2):133.
[95] BROWN P, SPALDING R E, REVELLE D O, et al. The flux of small near-Earth objects colliding with the Earth[J]. Nature, 2002, 420(6913):294-296.
[96] CLOSE S, BROWN P, CAMPBELL-BROWN M, et al. Meteor head echo radar data: Mass–velocity selection effects[J]. Icarus, 2007, 186(2):547-556.
[97] CHEN F F. Introduction to Plasma Physics and Controlled Fusion[M]. Springer International Publishing, 2016.
[98] GURNETT D A, BHATTACHARJEE A. A introduction to plasma physics: with space and laboratory applications[M].Cambridge university press, 2005.
[99] TARANTINO P, GOEL A, CORSO A, et al. An electrostatic method to model the expansion of hypervelocity impact plasma on positively biased surfaces[J]. Physics of Plasmas, 2018, 25(9):092103.
[100] O’SHEA E, STERNOVSKY Z, MALASPINA D M. Interpreting Dust Impact Signals Detected by the STEREO Spacecraft[J]. Journal of Geophysical Research: SpacePhysics, 2017, 122(12):11864-11873.
[101] BALE S D, GOETZ K, BONNELL J, et al. Dust impact voltage signatures on Parker Solar Probe: influence of spacecraft floating potential[J]. arXiv preprint arXiv:2006.00776,2020.
[102] FOX N J, VELLI M C, BALE S D, et al. The Solar Probe Plus Mission: Humanity’s First Visit to Our Star [J]. Space Science Reviews, 2015, 204(1-4): 7-48.
[103] YE S Y, AVERKAMP T F, KURTH W S, et al. Juno Waves Detection of Dust Impacts Near Jupiter[J]. Journal of Geophysical Research: Planets, 2020, 125(6):e2019JE006367.
[104] MCCOMAS D J, VELLI M, LEWIS W S, et al. Understanding coronal heating and solar wind acceleration: Case for in situ near-Sun measurements[J]. Reviews of Geophysics, 2007, 45(1):485-493.
[105] WEBER T, ANDERSSON L, MALASPINA D, et al. Dust Observations Using Common Mode Measurements from the Langmuir Probe and Waves Instrument on the MAVEN Mission[C]//Lunar and Planetary Science Conference. 2015(1832):2431.
[106] 邵文权,乔妮,王建波.基于波形互相关系数的变压器励磁涌流识别方法[J].电力系统保护与控制,2015,43(23):14-20.
[107] PICKETT J S, KURTH W S, GURNETT D A, et al. Electrostatic solitary waves observed at Saturn by Cassini inside 10Rs and near Enceladus[J]. Journal of Geophysical Research: Space Physics, 2015, 120(8):6569-6580.
[108] KELLOGG P J, GOETZ K, MONSON S J. Dust impact signals on the wind spacecraft[J]. Journal of Geophysical Research: Space Physics, 2016, 121(2):966-991.
[109] ZAKHAROV A, HORANYI M, LEE P, et al. Dust at the Martian moons and in the circummartian space[J]. Planetary and Space Science, 2014, 102:171-175.
[110] HAMILTON D P. The Asymmetric Time-Variable Rings of Mars [J]. Icarus, 1996, 119(1): 153-172.
修改评论