中文版 | English
题名

基于三维导电网络的压力传感器制备及性能研究

其他题名
STUDY ON FABRICATION AND PERFORMANCE OF PRESSURE SENSOR BASED ON THREE-DIMENSIONAL CONDUCTIVE GRIDS
姓名
姓名拼音
LI Fangmei
学号
12032670
学位类型
硕士
学位专业
085601 材料工程
学科门类/专业学位类别
0856 材料与化工
导师
王敏
导师单位
深港微电子学院
论文答辩日期
2022-05-17
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  近年来,柔性压力传感器作为核心部件之一在植入式电子设备、电子皮肤和可穿戴式健康监测设备等领域展现出巨大的应用潜力。目前,基于电阻式柔性压力传感器的研究主要集中于通过优化敏感材料性能及提出新颖的结构设计来对电阻式压力传感器性能进行提升。本论文提出银纳米线(AgNWs)三维编织态导电网络作为器件的导电功能层,并引入一种刚性力学传导结构,提升柔性电阻式压力传感器的灵敏度等性能。主要研究结果如下:
为实现三维编织态银纳米导电网络与后期的刚性微球铺陈与封装工艺的兼容性,提出了聚二甲基硅氧烷(PDMS)软光刻工艺,将硬质硅基底的倒四棱锥腔阵列复刻到柔性基体上,避免三维导电网络在转移过程中造成的损伤,同时实现了器件结构调控的可行性。此外,实现了三维编织态AgNWs导电网络在PDMS上的可控沉积。并研究了AgNWs墨水在PDMS模板微腔体中的流体自组装行为。

将刚性氧化锆(ZrO2)微球引入到上述压力传感器中,在不破坏下层三维导电层的前提下将刚性微球阵列成功铺陈到PDMS微腔体中,并利用PDMS浇筑实现了微球阵列的定位和封装。通过将低杨氏模量微结构PDMS弹性体和高杨氏模量ZrO2微球组装在一起,并采用三维AgNWs导电网络作为功能层,制备柔性压力传感器。测试结果显示,引入刚性微球后,压力传感器的灵敏度提升了10倍。分析该刚性微球可在局部区域形成应力集中,将外加压力高效地定向传递到导电功能层,从而提高了器件的性能。采用有限元仿真对刚性微球作用下器件的应力应变进行了评估,从理论角度验证了刚性微球的力传导机理。

本文从器件结构设计、三维编织态导电层自组装行为、刚性微球的力传导机制等对器件的性能影响出发,提出了一种基于三维编织态AgNWs导电网络及刚性微球耦合的柔性压力传感器,对新型高灵敏性压阻式压力传感器的结构设计、制备和性能提升有一定的工程价值和指导意义。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1] RUTH S R A, FEIG V R, TRAN H, et al. Microengineering Pressure Sensor Active Layers for Improved Performance [J]. Advanced Functional Materials, 2020, 30(39).
[2] KALSOOM T, RAMZAN N, AHMED S, et al. Advances in Sensor Technologies in the Era of Smart Factory and Industry 4.0 [J]. Sensors (Basel), 2020, 20(23).
[3] DEB MAJUMDER B, ROY J K, PADHEE S. Recent Advances in Multifunctional Sensing Technology on a Perspective of Multi-Sensor System: A Review [J]. IEEE Sensors Journal, 2019, 19(4): 1204-14.
[4] KENRY , YEO J C, LIM C T. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications [J]. Microsyst Nanoeng, 2016, 2(1): 16043.
[5] W ANG L, JACKMAN J A, TAN E-L, et al. High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators [J]. Nano Energy, 2017, 36:38-45.
[6] PETTI L, MüNZENRIEDER N, VOGT C, et al. Metal oxide semiconductor thin-film transistors for flexible electronics [J]. Applied Physics Reviews, 2016, 3(2): 021303.
[7] SINGH E, MEYY APP AN M, NALW A H S. Flexible Graphene-Based Wearable Gas and Chemical Sensors [J]. ACS Applied Materials & Interfaces, 2017, 9(40): 34544-86.
[8] WU Y T, Y AN T, P AN Z J. Wearable Carbon-Based Resistive Sensors for Strain Detection: A Review [J]. Ieee Sensors Journal, 2021, 21(4): 4030-43.
[9] SUN Y , W ANG X, XIAO M, et al. Elastic-Modulus-Dependent Macroscopic Supramolecular Assembly of Poly(dimethylsiloxane) for Understanding Fast Interfacial Adhesion [J]. Langmuir, 2021, 37(14): 4276-83.
[10] LEE D G, JEONG O C. Fabrication of a Wrinkled Surface on Poly(dimethylsiloxane) Using a Thermal Curing Process [J]. Japanese Journal of Applied Physics, 2013, 52(6S): 06GK11.
[11] SHAO G, WU J, CAI Z, et al. Fabrication of elastomeric high-aspect-ratio microstructures using polydimethylsiloxane (PDMS) double casting technique [J]. Sensors & Actuators A Physical, 2012, 178(none): 230-6.
[12] YI Y , W ANG B, LIU X, et al. Flexible piezoresistive strain sensor based on CNTs–polymer composites: a brief review [J]. Carbon Letters, 2022, 5(5): 1727-52.
[13] PANG Y, ZHANG K, Y ANG Z, et al. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity [J]. ACS Nano, 2018, 12(3): 2346-54.
[14] HELGASON R, CAMPIGOTTO A, LAI Y J. The development of a pressure sensor using a technique for patterning silver nanowires on 3-dimensional curved PDMS membranes [J]. Journal of Micromechanics and Microengineering, 2020, 30(9).
[15] SCHLICKE H, KUNZE S, REBBER M, et al. Cross-Linked Gold Nanoparticle Composite Membranes as Highly Sensitive Pressure Sensors [J]. Advanced Functional Materials, 2020, 30(40).
[16] JU Y H, HAN C J, KIM K S, et al. UV-Curable Adhesive Tape-Assisted Patterning of Metal Nanowires for Ultrasimple Fabrication of Stretchable Pressure Sensor [J]. Advanced Materials Technologies, 2021, 6(12).
[17] KIM H, GILMORE C M, PIQUE A, et al. Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices [J]. Journal of Applied Physics, 1999, 86(11): 6451-61.
[18] JGTA B, BJW A B, SAMA B, et al. Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells [J]. Solar Energy Materials and Solar Cells, 2013, 110:98-106.
[19] JEONG, HEIJUN, LIM, et al. Sensors, V ol. 16, Pages 1839: A Stretchable Radio-Frequency Strain Sensor Using Screen Printing Technology [J]. 2016.
[20] CAI G, DARMAW AN P, CUI M, et al. Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors [J]. Advanced Energy Materials, 2016, 6(4):n/a-n/a.
[21] ZHANG Z, ZHANG X, XIN Z, et al. Controlled inkjetting of a conductive pattern of silver nanoparticles based on the coffee-ring effect [J]. Adv Mater, 2013, 25(46): 6714-8.
[22] PARK S, VOSGUERICHIAN M, BAO Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics [J]. Nanoscale, 2013, 5(5): 1727-52.
[23] CHEN T L, GHOSH D S, MARCHENA M, et al. Nanopatterned Graphene on a Polymer Substrate by a Direct Peel-off Technique [J]. Acs Appl Mater Interfaces, 2015, 7(10): 5938-43.
[24] LIU J, GUO L, LIU X, et al. Protection-Free Ag Nanowires as a Transparent Conductive Electrode for Improved Cu(In1–x, Gax)Se2 (CIGS)-Based Photovoltaic Performances [J]. ACS Applied Energy Materials, 2018, 1(2): 783-9.
[25] COSKUN S, AKSOY B, UNALAN H E. Polyol Synthesis of Silver Nanowires: An Extensive Parametric Study [J]. Crystal Growth & Design, 2011, 11(11): 4963-9.
[26] BURDA C, CHEN X, NARAY ANAN R, et al. Chemistry and properties of nanocrystals of different shapes [J]. Chem Rev, 2005, 105(4): 1025-102.
[27] CAO G, LIU D. Template-based synthesis of nanorod, nanowire, and nanotube arrays [J]. Adv Colloid Interface Sci, 2008, 136(1-2): 45-64.
[28] LEE P, LEE J, LEE H, et al. Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network [J]. Advanced Materials, 2012.
[29] LEE J Y, CONNOR S T, CUI Y, et al. Solution-processed metal nanowire mesh transparent electrodes [J]. Nano Letter, 2008, 8(2): 689-92.
[30] ZHOU H, SONG Y . Fabrication of Silver Mesh/Grid and Its Applications in Electronics [J]. ACS Appl Mater Interfaces, 2021, 13(3): 3493-511.
[31] AHN Y, LEE H, LEE D, et al. Highly Conductive and Flexible Silver Nanowire-Based Microelectrodes on Biocompatible Hydrogel [J]. ACS Applied Materials & Interfaces, 2014, 6(21): 18401-7.
[1] RUTH S R A, FEIG V R, TRAN H, et al. Microengineering Pressure Sensor Active Layers for Improved Performance [J]. Advanced Functional Materials, 2020, 30(39).
[2] KALSOOM T, RAMZAN N, AHMED S, et al. Advances in Sensor Technologies in the Era of Smart Factory and Industry 4.0 [J]. Sensors (Basel), 2020, 20(23).
[3] DEB MAJUMDER B, ROY J K, PADHEE S. Recent Advances in Multifunctional Sensing Technology on a Perspective of Multi-Sensor System: A Review [J]. IEEE Sensors Journal, 2019, 19(4): 1204-14.
[4] KENRY, YEO J C, LIM C T. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications [J]. Microsyst Nanoeng, 2016, 2(1): 16043.
[5] WANG L, JACKMAN J A, TAN E-L, et al. High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators [J]. Nano Energy, 2017, 36:38-45.
[6] PETTI L, MüNZENRIEDER N, VOGT C, et al. Metal oxide semiconductor thin-film transistors for flexible electronics [J]. Applied Physics Reviews, 2016, 3(2): 021303.
[7] SINGH E, MEYYAPPAN M, NALWA H S. Flexible Graphene-Based Wearable Gas and Chemical Sensors [J]. ACS Applied Materials & Interfaces, 2017, 9(40): 34544-86.
[8] WU Y T, YAN T, PAN Z J. Wearable Carbon-Based Resistive Sensors for Strain Detection: A Review [J]. Ieee Sensors Journal, 2021, 21(4): 4030-43.
[9] SUN Y, WANG X, XIAO M, et al. Elastic-Modulus-Dependent Macroscopic Supramolecular Assembly of Poly(dimethylsiloxane) for Understanding Fast Interfacial Adhesion [J]. Langmuir, 2021, 37(14): 4276-83.
[10] LEE D G, JEONG O C. Fabrication of a Wrinkled Surface on Poly(dimethylsiloxane) Using a Thermal Curing Process [J]. Japanese Journal of Applied Physics, 2013, 52(6S): 06GK11.
[11] SHAO G, WU J, CAI Z, et al. Fabrication of elastomeric high-aspect-ratio microstructures using polydimethylsiloxane (PDMS) double casting technique [J]. Sensors & Actuators A Physical, 2012, 178(none): 230-6.
[12] YI Y, WANG B, LIU X, et al. Flexible piezoresistive strain sensor based on CNTs–polymer composites: a brief review [J]. Carbon Letters, 2022,
[13] PANG Y, ZHANG K, YANG Z, et al. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity [J]. ACS Nano, 2018, 12(3): 2346-54.
[14] HELGASON R, CAMPIGOTTO A, LAI Y J. The development of a pressure sensor using a technique for patterning silver nanowires on 3-dimensional curved PDMS membranes [J]. Journal of Micromechanics and Microengineering, 2020, 30(9).
[15] SCHLICKE H, KUNZE S, REBBER M, et al. Cross-Linked Gold Nanoparticle Composite Membranes as Highly Sensitive Pressure Sensors [J]. Advanced Functional Materials, 2020, 30(40).
[16] JU Y H, HAN C J, KIM K S, et al. UV-Curable Adhesive Tape-Assisted Patterning of Metal Nanowires for Ultrasimple Fabrication of Stretchable Pressure Sensor [J]. Advanced Materials Technologies, 2021, 6(12).
[17] KIM H, GILMORE C M, PIQUE A, et al. Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices [J]. Journal of Applied Physics, 1999, 86(11): 6451-61.
[18] JGTA B, BJWA B, SAMA B, et al. Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells [J]. Solar Energy Materials and Solar Cells, 2013, 110:98-106.
[19] JEONG, HEIJUN, LIM, et al. Sensors, Vol. 16, Pages 1839: A Stretchable Radio-Frequency Strain Sensor Using Screen Printing Technology [J]. 2016.
[20] CAI G, DARMAWAN P, CUI M, et al. Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors [J]. Advanced Energy Materials, 2016, 6(4):n/a-n/a.
[21] ZHANG Z, ZHANG X, XIN Z, et al. Controlled inkjetting of a conductive pattern of silver nanoparticles based on the coffee-ring effect [J]. Adv Mater, 2013, 25(46): 6714-8.
[22] PARK S, VOSGUERICHIAN M, BAO Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics [J]. Nanoscale, 2013, 5(5): 1727-52.
[23] CHEN T L, GHOSH D S, MARCHENA M, et al. Nanopatterned Graphene on a Polymer Substrate by a Direct Peel-off Technique [J]. Acs Appl Mater Interfaces, 2015, 7(10): 5938-43.
[24] LIU J, GUO L, LIU X, et al. Protection-Free Ag Nanowires as a Transparent Conductive Electrode for Improved Cu(In1–x, Gax)Se2 (CIGS)-Based Photovoltaic Performances [J]. ACS Applied Energy Materials, 2018, 1(2): 783-9.
[25] COSKUN S, AKSOY B, UNALAN H E. Polyol Synthesis of Silver Nanowires: An Extensive Parametric Study [J]. Crystal Growth & Design, 2011, 11(11): 4963-9.
[26] BURDA C, CHEN X, NARAYANAN R, et al. Chemistry and properties of nanocrystals of different shapes [J]. Chem Rev, 2005, 105(4): 1025-102.
[27] CAO G, LIU D. Template-based synthesis of nanorod, nanowire, and nanotube arrays [J]. Adv Colloid Interface Sci, 2008, 136(1-2): 45-64.
[28] LEE P, LEE J, LEE H, et al. Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network [J]. Advanced Materials, 2012.
[29] LEE J Y, CONNOR S T, CUI Y, et al. Solution-processed metal nanowire mesh transparent electrodes [J]. Nano Letter, 2008, 8(2): 689-92.
[30] ZHOU H, SONG Y. Fabrication of Silver Mesh/Grid and Its Applications in Electronics [J]. ACS Appl Mater Interfaces, 2021, 13(3): 3493-511.
[31] AHN Y, LEE H, LEE D, et al. Highly Conductive and Flexible Silver Nanowire-Based Microelectrodes on Biocompatible Hydrogel [J]. ACS Applied Materials & Interfaces, 2014, 6(21): 18401-7.
[32] MARTINEZ V, STAUFFER F, ADAGUNODO M O, et al. Stretchable Silver Nanowire-Elastomer Composite Microelectrodes with Tailored Electrical Properties [J]. ACS Appl Mater Interfaces, 2015, 7(24): 13467-75.
[33] UM D S, LEE Y, KIM T, et al. High-Resolution Filtration Patterning of Silver Nanowire Electrodes for Flexible and Transparent Optoelectronic Devices [J]. ACS Appl Mater Interfaces, 2020, 12(28): 32154-62.
[34] WU H, MENON M, GATES E, et al. Reconfigurable topography for rapid solution processing of transparent conductors [J]. Adv Mater, 2014, 26(5).
[35] KWON Y T, MOON J W, CHOI Y M, et al. Novel Concept for Fabricating a Flexible Transparent Electrode Using the Simple and Scalable Self-Assembly of Ag Nanowires [J]. The Journal of Physical Chemistry C, 2017, 121(10).
[36] ABBASI S A, CHAI Z, BUSNAINA A. Scalable Printing of High‐Resolution Flexible Transparent Grid Electrodes Using Directed Assembly of Silver Nanoparticles [J]. Advanced Materials Interfaces, 2019, 6(21).
[37] HAN J, YANG J, GAO W, et al. Ice‐Templated, Large‐Area Silver Nanowire Pattern for Flexible Transparent Electrode [J]. Advanced Functional Materials, 2021, 31(16).
[38] LIANG Z, CHENG J, ZHAO Q, et al. High‐Performance Flexible Tactile Sensor Enabling Intelligent Haptic Perception for a Soft Prosthetic Hand [J]. Advanced Materials Technologies, 2019, 4.
[39] WANG F L, JIANG J F, LIU Q L, et al. Piezopotential gated two-dimensional InSe field-effect transistor for designing a pressure sensor based on piezotronic effect [J]. Nano Energy, 2020, 70:104457.
[40] ZHIMING, LIN, JUN, et al. Large-Scale and Washable Smart Textiles Based on Triboelectric Nanogenerator Arrays for Self-Powered Sleeping Monitoring [J]. Advanced Functional Materials, 2017.
[41] JOO Y, BYUN J, SEONG N, et al. Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor [J]. Nanoscale, 2015, 7(14): 6208-15.
[42] XIONG Y, SHEN Y, TIAN L, et al. A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring [J]. Nano Energy, 2020, 70.
[43] YANG T, XIE D, LI Z, et al. Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance [J]. Materials Science & Engineering, R Reports: A Review Journal, 2017, 115:1-37.
[44] LI X, WANG Y, SUN S, et al. Flexible and Ultrasensitive Piezoelectric Composites Based on Highly (00l)‐Assembled BaTiO 3 Microplatelets for Wearable Electronics Application [J]. Advanced Materials Technologies, 2019, 4(12): 1900689.
[45] JENKINS K, NGUYEN V, ZHU R, et al. Piezotronic Effect: An Emerging Mechanism for Sensing Applications [J]. Sensors, 2015, 15(9): 22914-40.
[46] HA M, LIM S, CHO S, et al. Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors [J]. ACS Nano, 2018, 12(4): 3964-74.
[47] WANG S, CHEN G, NIU S, et al. Magnetic-Assisted Transparent and Flexible Percolative Composite for Highly Sensitive Piezoresistive Sensor via Hot Embossing Technology [J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48331-40.
[48] SIMMONS J G. Generalized Thermal J‐V Characteristic for the Electric Tunnel Effect [J]. Journal of Applied Physics, 1964, 35(9): 2655-8.
[49] SEROKA N S, MAMO M A. Application of functionalised MXene-carbon nanoparticle-polymer composites in resistive hydrostatic pressure sensors [J]. Sn Applied Sciences, 2020, 2(3).
[50] LEE D, LEE H, JEONG Y, et al. Highly Sensitive, Transparent, and Durable Pressure Sensors Based on Sea-Urchin Shaped Metal Nanoparticles [J]. Adv Mater, 2016, 28(42): 9364-9.
[51] PENG S, BLANLOEUIL P, WU S, et al. Rational Design of Ultrasensitive Pressure Sensors by Tailoring Microscopic Features [J]. Advanced Materials Interfaces, 2018, 5(18).
[52] CHOONG C L, SHIM M B, LEE B S, et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array [J]. Adv Mater, 2014, 26(21): 3451-8.
[53] YIN F, YANG J, PENG H, et al. Flexible and highly sensitive artificial electronic skin based on graphene/polyamide interlocking fabric [J]. Journal of Materials Chemistry C, 2018, 6(25): 6840-6.
[54] XIAO X, YUAN L, ZHONG J, et al. High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films [J]. Advanced Materials, 2011, 23(45): 5440-4.
[55] DONG X, WEI Y, CHEN S, et al. A linear and large-range pressure sensor based on a graphene/silver nanowires nanobiocomposites network and a hierarchical structural sponge [J]. Composites Science and Technology, 2018, 155:108-16.
[56] LIU F, HAN F, LING L, et al. An Omni-Healable and Highly Sensitive Capacitive Pressure Sensor with Microarray Structure [J]. Chemistry, 2018, 24(63): 16823-32.
[57] RUTH S R A, BEKER L, TRAN H, et al. Rational Design of Capacitive Pressure Sensors Based on Pyramidal Microstructures for Specialized Monitoring of Biosignals [J]. Advanced Functional Materials, 2019, 30(29).
[58] YUE Y, LIU N, LIU W, et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor [J]. Nano Energy, 2018, 50:79-87.
[59] LIU M Y, HANG C Z, ZHAO X F, et al. Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial [J]. Nano Energy, 2021, 87.
[60] KIM Y S, LEE C S, JIN W H, et al. 100×100 thermo-piezoelectric cantilever array for SPM nano-data-storage application [J]. Sensors and Materials, 2005, 17(2): 57-63.
[61] YONG S O, DONG Y C, SUNG H J. Direct imprinting of thermally reduced silver nanoparticles via deformation-driven ink injection for high-performance, flexible metal grid embedded transparent conductors [J]. Rsc Advances, 2015, 5(79): 64661-8.
[62] YIN F, LU H, PAN H, et al. Highly Sensitive and Transparent Strain Sensors with an Ordered Array Structure of AgNWs for Wearable Motion and Health Monitoring [J]. Sci Rep, 2019, 9(1): 2403.
[63] LI Z, LI L, MO L, et al. Highly Sensitive Flexible Pressure Sensor with Microstructural Dielectric Layer; proceedings of the China Academic Conference on Printing & Packaging & Media Technology, F, 2016 [C].
[64] DAHIYA R, GOTTARDI G, LAIDANI N. PDMS residues-free micro/macrostructures on flexible substrates [J]. Microelectronic Engineering, 2015, 136:57-62.
[65] HASSANIN H, MOHAMMADKHANI A, JIANG K. Fabrication of hybrid nanostructured arrays using a PDMS/PDMS replication process [J]. Lab Chip, 2012, 12(20): 4160-7.
[66] LIU Z, MEYERS M A, ZHANG Z, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications [J]. Progress in Materials Science, 2017, 88:467-98.
[67] LIU Q, GONG W Q, LI S N, et al. Gradient architecture to boost the electrochemical capacitance of hard carbon [J]. J Power Sources, 2021, 515:11.
[68] XUE F, ZHENG H, PENG Q, et al. An ultra-broad-range pressure sensor based on a gradient stiffness design [J]. Mater Horiz, 2021, 8(8): 2260-72.
[69] GENG D, CHEN S Y, CHEN R, et al. Tunable Wide Range and High Sensitivity Flexible Pressure Sensors with Ordered Multilevel Microstructures [J]. Advanced Materials Technologies, 2021, 2101031.
[70] CAO J, ZHOU Z, SONG Q, et al. Ultrarobust Ti3C2Tx MXene-Based Soft Actuators via Bamboo-Inspired Mesoscale Assembly of Hybrid Nanostructures [J]. ACS Nano, 2020, 14(6): 7055-65.
[71] WEST G B, BROWN J H, ENQUIST B J. A General Model for the Origin of Allometric Scaling Laws in Biology [J]. Science, 1997, 276(5309): 122-6.
[72] LEE Y, MYOUNG J, CHO S, et al. Bioinspired Gradient Conductivity and Stiffness for Ultrasensitive Electronic Skins [J]. ACS Nano, 2021, 15(1): 1795-804.
[73] LEE J, KIM G, SHIN D K, et al. Solution-Processed Resistive Pressure Sensors Based on Sandwich Structures Using Silver Nanowires and Conductive Polymer [J]. Ieee Sensors Journal, 2018, 18(24): 9919-24.

所在学位评定分委会
深港微电子学院
国内图书分类号
TP212
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335940
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
李方玫. 基于三维导电网络的压力传感器制备及性能研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032670-李方玫-南方科技大学-(5826KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李方玫]的文章
百度学术
百度学术中相似的文章
[李方玫]的文章
必应学术
必应学术中相似的文章
[李方玫]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。