[1] TORIELLO N M, DOUGLAS E S, THAITRONG N, et al. Integrated microfluidic bioprocessor for single-cell gene expression analysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(51): 20173-20178.
[2] ALTSCHULER S J, WU L F. Cellular Heterogeneity: Do Differences Make a Difference?[J]. Cell, 2010, 141(4): 559-563.
[3] 林玲. 微/纳流控单细胞分析方法[J]. 生命科学仪器, 2020, 18(04): 19-26+11.
[4] MANZ A, GRABER N, WIDMER H M. Miniaturized Total Chemical-Analysis Systems - a Novel Concept for Chemical Sensing[J]. Sensors and Actuators B-Chemical, 1990, 1(1-6): 244-248.
[5] DUFFY D C, MCDONALD J C, SCHUELLER O J A, et al. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)[J]. Analytical Chemistry, 1998, 70(23): 4974-4984.
[6] QUAKE S R, SCHERER A. From micro- to nanofabrication with soft materials[J]. Science, 2000, 290(5496): 1536-1540.
[7] UNGER M A, CHOU H P, THORSEN T, et al. Monolithic microfabricated valves and pumps by multilayer soft lithography[J]. Science, 2000, 288(5463): 113-116.
[8] THORSEN T, MAERKL S J, QUAKE S R. Microfluidic large-scale integration[J]. Science, 2002, 298(5593): 580-584.
[9] AU A K, LAI H Y, UTELA B R, et al. Microvalves and Micropumps for BioMEMS[J]. Micromachines, 2011, 2(2): 179-220.
[10] BAO B, WANG Z C, THUSHARA D, et al. Recent Advances in Microfluidics-Based Chromatography-A Mini Review[J]. Separations, 2021, 8(1): 3.
[11] DING Y, HOWES P D, DEMELLO A J. Recent Advances in Droplet Microfluidics[J]. Analytical Chemistry, 2020, 92(1): 132-149.
[12] DALILI A, SAMIEI E, HOORFAR M. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches[J]. Analyst, 2019, 144(1): 87-113.
[13] CUI P, WANG S. Application of microfluidic chip technology in pharmaceutical analysis: A review[J]. Journal of Pharmaceutical Analysis, 2019, 9(4): 238-247.
[14] AZIZIPOUR N, AVAZPOUR R, ROSENZWEIG D H, et al. Evolution of Biochip Technology: A Review from Lab-on-a-Chip to Organ-on-a-Chip[J]. Micromachines, 2020, 11(6):599.
[15] LEVATO R, JUNGST T, SCHEURING R G, et al. From Shape to Function: The Next Step in Bioprinting[J]. Advanced Materials, 2020, 32(12): 1906423.
[16] CHIRCOV C, GRUMEZESCU A M. Microelectromechanical Systems (MEMS) for Biomedical Applications[J]. Micromachines, 2022, 13(2): 164.
[17] TANIGUCHI Y, CHOI P J, LI G W, et al. Quantifying E-coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells[J]. Science, 2010, 329(5991): 533-538.
[18] 董盛华, 张晶, 葛胜祥. 微流控芯片细胞捕获分离方法概述[J]. 生物化学与生物物理进展, 2016, 43(11): 1102-1110.
[19] ZHU L, LIN H B, WAN S, et al. Efficient Isolation and Phenotypic Profiling of Circulating Hepatocellular Carcinoma Cells via a Combinatorial-Antibody-Functionalized Microfluidic Synergetic-Chip[J]. Analytical Chemistry, 2020, 92(22): 15229-15235.
[20] MISHRA A, DUBASH T D, EDD J F, et al. Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumor cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(29): 16839-16847.
[21] XI H D, ZHENG H, GUO W, et al. Active droplet sorting in microfluidics: a review[J]. Lab on a Chip, 2017, 17(5): 751-771.
[22] 程丹彤. 集成单细胞捕获、阵列化、释放及快速染色的微流控装置的研究[D]. 上海:上海交通大学, 2018.
[23] ZHENG S Y, LIN H K, LU B, et al. 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood[J]. Biomedical Microdevices, 2011, 13(1): 203-213.
[24] DI CARLO D, AGHDAM N, LEE L P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays[J]. Analytical Chemistry, 2006, 78(14): 4925-4930.
[25] TAN W H, TAKEUCHI S. A trap-and-release integrated microfluidic system for dynamic microarray applications[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(4): 1146-1151.
[26] JIN D, DENG B, LI J X, et al. A microfluidic device enabling high-efficiency single cell trapping[J]. Biomicrofluidics, 2015, 9(1): 014101.
[27] 孙东, 罗涛. 基于微流控的细胞操纵方法与应用[J]. 科技导报, 2018, 36(16): 29-38.
[28] YAMADA M, NAKASHIMA M, SEKI M. Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel[J]. Analytical Chemistry, 2004, 76(18): 5465-5471.
[29] TAKAGI J, YAMADA M, YASUDA M, et al. Continuous particle separation in a microchannel having asymmetrically arranged multiple branches[J]. Lab on a Chip, 2005, 5(7): 778-784.
[30] VIG A L, KRISTENSEN A. Separation enhancement in pinched flow fractionation[J]. Applied Physics Letters, 2008, 93(20):203507.
[31] KUNTAEGOWDANAHALLI S S, BHAGAT A A S, KUMAR G, et al. Inertial microfluidics for continuous particle separation in spiral microchannels[J]. Lab on a Chip, 2009, 9(20): 2973-2980.
[32] SHEN S F, TIAN C, LI T B, et al. Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation[J]. Lab on a Chip, 2017, 17(21): 3578-3591.
[33] SONG H J, ROSANO J M, WANG Y, et al. Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis[J]. Lab on a Chip, 2015, 15(5): 1320-1328.
[34] HUANG L R, COX E C, AUSTIN R H, et al. Continuous particle separation through deterministic lateral displacement[J]. Science, 2004, 304(5673): 987-990.
[35] ASHKIN A, DZIEDZIC J M, BJORKHOLM J E, et al. Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles[J]. Optics Letters, 1986, 11(5): 288-290.
[36] ASHKIN A, DZIEDZIC J M, YAMANE T. Optical trapping and manipulation of single cells using infrared laser beams[J]. Nature, 1987, 330(6150): 769-771.
[37] RODRIGO P, ERIKSEN R, DARIA V, et al. Interactive light-driven and parallel manipulation of inhomogeneous particles[J]. Optics Express, 2002, 10(26): 1550-1556.
[38] 赵磊. 基于微流控的多重单细胞阵列构建及应用[D]. 咸阳:西北农林科技大学, 2016.
[39] WANG X L, CHEN S X, KONG M, et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies[J]. Lab on a Chip, 2011, 11(21): 3656-3662.
[40] WU M, OZCELIK A, RUFO J, et al. Acoustofluidic separation of cells and particles[J]. Microsystems & Nanoengineering, 2019, 5(1):32.
[41] PETERSSON F, NILSSON A, HOLM C, et al. Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels[J]. Analyst, 2004, 129(10): 938-943.
[42] 吴春卉, 姜有为, 程鑫. 微流控芯片在单细胞捕获中的应用[J]. 科技导报, 2018, 36(16): 39-45.
[43] DING X Y, LIN S C S, KIRALY B, et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(28): 11105-11109.
[44] POHL H A. The Motion and Precipitation of Suspensoids in Divergent Electric Fields[J]. Journal of Applied Physics, 1951, 22(7): 869-871.
[45] 徐溢, 郝敦玲, 曾雪, et al. 生化样本的芯片介电电泳富集和分离研究进展[J]. 化学通报, 2009, 72(01): 4-9.
[46] LUO T, FAN L, ZENG Y X, et al. A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation[J]. Lab on a Chip, 2018, 18(11): 1521-1532.
[47] 陈礼, 郑小林, 胡宁, et al. 基于介电电泳的微流控细胞分离芯片的研究进展[J]. 分析化学, 2015, 43(02): 300-309.
[48] MODARRES P, TABRIZIAN M. Alternating current dielectrophoresis of biomacromolecules: The interplay of electrokinetic effects[J]. Sensors and Actuators B-Chemical, 2017, 252: 391-408.
[49] DOH I, CHO Y H. A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process[J]. Sensors and Actuators a-Physical, 2005, 121(1): 59-65.
[50] THOMAS R S, MORGAN H, GREEN N G. Negative DEP traps for single cell immobilisation[J]. Lab on a Chip, 2009, 9(11): 1534-1540.
[51] MAZUTIS L, GILBERT J, UNG W L, et al. Single-cell analysis and sorting using droplet-based microfluidics[J]. Nature Protocols, 2013, 8(5): 870-891.
[52] HOSOKAWA M, HAYATA T, FUKUDA Y, et al. Size-Selective Microcavity Array for Rapid and Efficient Detection of Circulating Tumor Cells[J]. Analytical Chemistry, 2010, 82(15): 6629-6635.
[53] ZHAO L, MA C, SHEN S, et al. Pneumatic microfluidics-based multiplex single-cell array[J]. Biosensors & Bioelectronics, 2016, 78: 423-430.
[54] WU C H, CHEN R F, LIU Y, et al. A planar dielectrophoresis-based chip for high-throughput cell pairing[J]. Lab on a Chip, 2017, 17(23): 4008-4014.
[55] 潘洋. 基于微液滴阵列的生物大分子检测技术研究[D]. 合肥:中国科学技术大学, 2020.
[56] 段玉. 用于单微球阵列捕获与单细胞力学分析的微流体芯片研究[D]. 深圳:深圳大学, 2019.
修改评论