[1] HIROSE S, KUNIEDA O. Generalized standard foot trajectory for a quadruped walking vehicle [J]. The International Journal of Robotics Research, 1991, 10(1): 3-12.
[2] KIMURA H, FUKUOKA Y, COHEN A H. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts[J]. The International Journal of Robotics Research, 2007, 26(5): 475-490.
[3] BLEDT G, POWELL M J, KATZ B, et al. MIT Cheetah 3: Design and control of a robust, dynamic quadruped robot[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 2245-2252.
[4] LIU Y, WENSING P M, SCHMIEDELER J P, et al. Terrain-Blind Humanoid Walking Based on a 3-D Actuated Dual-SLIP Model[J]. IEEE Robotics and Automation Letters, 2016, 1(2): 1073-1080.
[5] KROTKOV E, SIMMONS R. Perception, planning, and control for autonomous walking with the ambler planetary rover[J]. The International journal of robotics research, 1996, 15(2): 155180.
[6] WOODEN D, MALCHANO M, BLANKESPOOR K, et al. Autonomous navigation for BigDog[C]//2010 IEEE international conference on robotics and automation. Ieee, 2010: 47364741.
[7] REBULA J R, NEUHAUS P D, BONNLANDER B V, et al. A controller for the littledog quadruped walking on rough terrain[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE, 2007: 1467-1473.
[8] KOLTER J Z, RODGERS M P, NG A Y. A control architecture for quadruped locomotion over rough terrain[C]//2008 IEEE International Conference on Robotics and Automation. 2008: 811-818.
[9] VERNAZA P, LIKHACHEV M, BHATTACHARYA S, et al. Search-based planning for a legged robot over rough terrain[C]//2009 IEEE International Conference on Robotics and Automation. 2009: 2380-2387.
[10] ZUCKER M, RATLIFF N, STOLLE M, et al. Optimization and learning for rough terrain legged locomotion[J]. The International Journal of Robotics Research, 2011, 30(2): 175-191.
[11] WINKLER A W, MASTALLI C, HAVOUTIS I, et al. Planning and execution of dynamic whole-body locomotion for a hydraulic quadruped on challenging terrain[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015: 5148-5154.
[12] MASTALLI C, WINKLER A, HAVOUTIS I, et al. On-line and On-board Planning and Perception for Quadrupedal Locomotion[C]//IEEE International Conference on Technologies for Practical Robot Applications (TEPRA). 2015.
[13] FANKHAUSER P, BJELONIC M, BELLICOSO C D, et al. Robust Rough-Terrain Locomotion with a Quadrupedal Robot[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). 2018: 5761-5768.
[14] JENELTEN F, MIKI T, VIJAYAN A E, et al. Perceptive Locomotion in Rough Terrain–Online Foothold Optimization[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5370-5376.
[15] Mastalli C, Havoutis I, Focchi M, et al. Motion Planning for Quadrupedal Locomotion: Coupled Planning, Terrain Mapping, and Whole-Body Control[J]. IEEE Transactions on Robotics, 2020: 1-14.
[16] KIM D, CARBALLO D, CARLO J D, et al. Vision Aided Dynamic Exploration of Unstructured Terrain with a Small-Scale Quadruped Robot[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). 2020: 2464-2470.
[17] KALAKRISHNAN M, BUCHLI J, PASTOR P, et al. Learning locomotion over rough terrain using terrain templates[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2009: 167-172.
[18] MAGAñA O A V, BARASUOL V, CAMURRI M, et al. Fast and Continuous Foothold Adaptation for Dynamic Locomotion Through CNNs[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 2140-2147.
[19] VILLARREAL O, BARASUOL V, WENSING P M, et al. MPC-based Controller with Terrain Insight for Dynamic Legged Locomotion[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). 2020: 2436-2442.
[20] DEITS R, TEDRAKE R. Footstep planning on uneven terrain with mixed-integer convex optimization[C]//2014 IEEE-RAS international conference on humanoid robots. IEEE, 2014: 279-286.
[21] ACEITUNO-CABEZAS B, DAI H, CAPPELLETTO J, et al. A mixed-integer convex optimization framework for robust multilegged robot locomotion planning over challenging terrain [C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 4467-4472.
[22] ACEITUNO-CABEZAS B, MASTALLI C, DAI H, et al. Simultaneous contact, gait, and motion planning for robust multilegged locomotion via mixed-integer convex optimization[J]. IEEE Robotics and Automation Letters, 2017, 3(3): 2531-2538.
[23] GRIFFIN R J, WIEDEBACH G, MCCRORY S, et al. Footstep planning for autonomous walking over rough terrain[C]//2019 IEEE-RAS 19th international conference on humanoid robots (humanoids). IEEE, 2019: 9-16.
[24] SHAO X, YANG Y, WANG W. Obstacle crossing with stereo vision for a quadruped robot[C]// 2012 IEEE International Conference on Mechatronics and Automation. IEEE, 2012: 17381743.
[25] 张慧. 四足机器人环境感知、识别与领航员跟随算法研究[D]. 山东大学, 2016.
[26] 李兴东. 基于 TOF 相机的四足机器人地形感知及静步态规划研究[D]. 哈尔滨工业大学.
[27] LEE Y H, LEE Y H, LEE H, et al. Whole-Body Motion and Landing Force Control for Quadrupedal Stair Climbing[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2019: 4746-4751.
[28] MIKI T, LEE J, HWANGBO J, et al. Learning robust perceptive locomotion for quadrupedal robots in the wild[J]. Science Robotics, 2022, 7(62): eabk2822.
[29] ”MINITAUR”. https://spectrum.ieee.org/ghost-robotics-minitaur-quadruped[J]. 2016.
[30] KLEMM V, MORRA A, SALZMANN C, et al. Ascento: A two-wheeled jumping robot[C]// 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 7515-7521.
[31] ”CASSIE”. https://spectrum.ieee.org/building-robots-that-can-go-where-we-go[J]. 2019.
[32] FEATHERSTONE R. Rigid body dynamics algorithms[M]. Springer, 2014.
[33] KLEMM V, MORRA A, GULICH L, et al. LQR-assisted whole-body control of a wheeled bipedal robot with kinematic loops[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3745-3752.
[34] REHER J, AMES A D. Inverse dynamics control of compliant hybrid zero dynamic walking [C]//2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021: 2040-2047.
[35] CARPENTIER J, BUDHIRAJA R, MANSARD N. Proximal and sparse resolution of constrained dynamic equations[C]//Robotics: Science and Systems 2021. 2021.
[36] DEL PRETE A, MANSARD N. Robustness to joint-torque-tracking errors in task-space inverse dynamics[J]. IEEE transactions on Robotics, 2016, 32(5): 1091-1105.
[37] WENSING P M, ORIN D E. Generation of dynamic humanoid behaviors through task-space control with conic optimization[C]//2013 IEEE International Conference on Robotics and Automation. IEEE, 2013: 3103-3109.
[38] SADEGHIAN H, VILLANI L, KESHMIRI M, et al. Task-space control of robot manipulators with null-space compliance[J]. IEEE Transactions on Robotics, 2013, 30(2): 493-506.
[39] SAAB L, RAMOS O E, KEITH F, et al. Dynamic whole-body motion generation under rigid contacts and other unilateral constraints[J]. IEEE Transactions on Robotics, 2013, 29(2): 346362.
[40] CARLO J D, WENSING P M, KATZ B, et al. Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive Control[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018: 1-9.
[41] BOUSSEMA C, POWELL M J, BLEDT G, et al. Online gait transitions and disturbance recovery for legged robots via the feasible impulse set[J]. IEEE Robotics and automation letters, 2019, 4(2): 1611-1618.
[42] POSA M, CANTU C, TEDRAKE R. A direct method for trajectory optimization of rigid bodies through contact[J]. The International Journal of Robotics Research, 2014, 33(1): 69-81.
[43] NEUNERT M, FARSHIDIAN F, WINKLER A W, et al. Trajectory optimization through contacts and automatic gait discovery for quadrupeds[J]. IEEE Robotics and Automation Letters, 2017, 2(3): 1502-1509.
[44] NAVEAU M, KUDRUSS M, STASSE O, et al. A Reactive Walking Pattern Generator Based on Nonlinear Model Predictive Control[J]. IEEE Robotics and Automation Letters, 2017, 2(1): 10-17.
[45] NEUNERT M, STÄUBLE M, GIFTTHALER M, et al. Whole-body nonlinear model predictive control through contacts for quadrupeds[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1458-1465.
[46] ORIN D E, GOSWAMI A, LEE S H. Centroidal dynamics of a humanoid robot[J]. Autonomous robots, 2013, 35(2): 161-176.
[47] DAI H, VALENZUELA A, TEDRAKE R. Whole-body motion planning with centroidal dynamics and full kinematics[C]//2014 IEEE-RAS International Conference on Humanoid Robots. IEEE, 2014: 295-302.
[48] HERZOG A, ROTELLA N, SCHAAL S, et al. Trajectory generation for multi-contact momentum control[C]//2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids). 2015: 874-880.
[49] KUINDERSMA S, DEITS R, FALLON M, et al. Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot[J]. Autonomous robots, 2016, 40(3): 429-455.
[50] KAJITA S, KANEHIRO F, KANEKO K, et al. Biped walking pattern generation by using preview control of zero-moment point[C]//2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422): volume 2. IEEE, 2003: 1620-1626.
[51] KALAKRISHNAN M, BUCHLI J, PASTOR P, et al. Fast, robust quadruped locomotion over challenging terrain[C]//2010 IEEE International Conference on Robotics and Automation. 2010: 2665-2670.
[52] DARIO BELLICOSO C, JENELTEN F, FANKHAUSER P, et al. Dynamic locomotion and whole-body control for quadrupedal robots[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017: 3359-3365.
[53] FARSHIDIAN F, JELAVIC E, SATAPATHY A, et al. Real-time motion planning of legged robots: A model predictive control approach[C]//2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids). IEEE, 2017: 577-584.
[54] BLEDT G, WENSING P M, KIM S. Policy-regularized model predictive control to stabilize diverse quadrupedal gaits for the MIT cheetah[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017: 4102-4109.
[55] WINKLER A W, BELLICOSO C D, HUTTER M, et al. Gait and Trajectory Optimization for Legged Systems Through Phase-Based End-Effector Parameterization[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1560-1567.
[56] BLEDT G, KIM S. Implementing Regularized Predictive Control for Simultaneous Real-Time Footstep and Ground Reaction Force Optimization[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2019: 6316-6323.
[57] CORBèRES T, FLAYOLS T, LéZIART P A, et al. Comparison of predictive controllers for locomotion and balance recovery of quadruped robots[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). 2021: 5021-5027.
[58] BJELONIC M, GRANDIA R, HARLEY O, et al. Whole-Body MPC and Online Gait Sequence Generation for Wheeled-Legged Robots[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2021: 8388-8395.
[59] KIM D, DI CARLO J, KATZ B, et al. Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control[J]. arXiv preprint arXiv:1909.06586, 2019.
[60] SENTIS L, KHATIB O. A whole-body control framework for humanoids operating in human environments[C]//Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. IEEE, 2006: 2641-2648.
[61] BELLICOSO C D, GEHRING C, HWANGBO J, et al. Perception-less terrain adaptation through whole body control and hierarchical optimization[C]//2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). IEEE, 2016: 558-564.
[62] BJELONIC M, BELLICOSO C D, DE VIRAGH Y, et al. Keep Rollin’—Whole-Body Motion Control and Planning for Wheeled Quadrupedal Robots[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 2116-2123.
[63] SLEIMAN J P, FARSHIDIAN F, MINNITI M V, et al. A Unified MPC Framework for WholeBody Dynamic Locomotion and Manipulation[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 4688-4695.
[64] HOLZ D, HOLZER S, RUSU R B, et al. Real-Time Plane Segmentation Using RGB-D Cameras [C]//RoboCup 2011: Robot Soccer World Cup XV. 2012.
[65] Flayols T, Del Prete A, Wensing P, et al. Experimental evaluation of simple estimators for humanoid robots[C]//2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids). 2017: 889-895.
[66] BLOESCH M, HUTTER M, HOEPFLINGER M A, et al. State estimation for legged robotsconsistent fusion of leg kinematics and IMU[J]. Robotics, 2013, 17: 17-24.
[67] ROTELLA N, BLOESCH M, RIGHETTI L, et al. State estimation for a humanoid robot[C]// 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2014: 952-958.
[68] BENALLEGUE M, LAMIRAUX F. Estimation and stabilization of humanoid flexibility deformation using only inertial measurement units and contact information[J]. International Journal of Humanoid Robotics, 2015, 12(03): 1550025.
[69] HARTLEY R, GHAFFARI M, EUSTICE R M, et al. Contact-aided invariant extended Kalman filtering for robot state estimation[J]. The International Journal of Robotics Research, 2020, 39(4): 402-430.
[70] UNITREE. https://github.com/unitreerobotics/unitree_ros/tree/master/robots/aliengo_descript ion[J].
[71] TODOROV E, EREZ T, TASSA Y. MuJoCo: A physics engine for model-based control[C]// 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012: 5026-5033.
[72] RUSU R B, COUSINS S. 3D is here: Point Cloud Library (PCL)[C]//IEEE International Conference on Robotics and Automation (ICRA). Shanghai, China, 2011.
[73] LYNCH K M, PARK F C. Modern robotics[M]. Cambridge University Press, 2017.
[74] CARPENTIER J, SAUREL G, BUONDONNO G, et al. The Pinocchio C++ library : A fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives [C]//2019 IEEE/SICE International Symposium on System Integration (SII). 2019: 614-619.
[75] RAIBERT M H. Legged robots that balance[M]. MIT press, 1986.
修改评论