[1] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B: Engineering, 2018, 143: 172-196.
[2] LAKHDAR Y, TUCK C, BINNER J, et al. Additive manufacturing of advanced ceramic materials[J]. Progress in Materials Science, 2020: 100736.
[3] ASKARI M, HUTCHINS D A, THOMAS P J, et al. Additive manufacturing of metamaterials: A review[J]. Additive Manufacturing, 2020: 101562.
[4] HERZOG D, SEYDA V, WYCISK E, et al. Additive manufacturing of metals[J]. Acta Materialia, 2016, 117: 371-392.
[5] 樊恩想,刘小欣,廖文俊,付超,苏青.金属增材制造的现状与发展[J].机械制造,2019,57(04):1-6+10.
[6] 叶梓恒. Ti6Al4V胫骨植入体个性化设计及其激光选区熔化制造工艺研究[D].华南理工大学,2014.
[7] LIU S, SHIN Y C. Additive manufacturing of Ti6Al4V alloy: A review[J]. Materials & Design, 2019, 164: 107552.
[8] VYAS C, POOLOGASUNDARAMPILLAI G, HOYLAND J, et al. 3D printing of biocomposites for osteochondral tissue engineering[M]//Biomedical Composites. Woodhead Publishing, 2017: 261-302.
[9] ZHANG B, LI Y, BAI Q. Defect formation mechanisms in selective laser melting: a review[J]. Chinese Journal of Mechanical Engineering, 2017, 30(3): 515-527.
[10] KIM F H, KIM F H, MOYLAN S P. Literature review of metal additive manufacturing defects[M]. US Department of Commerce, National Institute of Standards and Technology, 2018.
[11] ZHOU X, LIU X, ZHANG D, et al. Balling phenomena in selective laser melted tungsten[J]. Journal of Materials Processing Technology, 2015, 222: 33-42.
[12] WANG L, LI E L, SHEN H, et al. Adhesion effects on spreading of metal powders in selective laser melting[J]. Powder Technology, 2020, 363: 602-610.
[13] 麦淑珍,杨永强,王迪.激光选区熔化成型NiCr合金曲面表面形貌及粗糙度变化规律研究[J].中国激光,2015,42(12):96-105.
[14] 李剑. IN718合金的选区激光熔化成形工艺及性能研究[D].哈尔滨理工大学,2018.
[15] 王延庆,沈竞兴,吴海全.3D打印材料应用和研究现状[J].航空材料学报,2016,36(04):89-98.
[16] LEWANDOWSKI J J, SEIFI M. Metal additive manufacturing: a review of mechanical properties[J]. Annual review of materials research, 2016, 46: 151-186.
[17] GUO N, LEU M C. Additive manufacturing: technology, applications and research needs[J]. Frontiers of Mechanical Engineering, 2013, 8(3): 215-243.
[18] CHEN Y, PENG X, KONG L, et al. Defect inspection technologies for additive manufacturing[J]. International Journal of Extreme Manufacturing, 2021, 3(2): 022002.
[19] KUMBHAR N N, MULAY A V. Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review[J]. Journal of The Institution of Engineers (India): Series C, 2018, 99(4): 481-487.
[20] LEE J Y, NAGALINGAM A P, YEO S H. A review on the state-of-the-art of surface finishing processes and related ISO/ASTM standards for metal additive manufactured components[J]. Virtual and physical prototyping, 2021, 16(1): 68-96.
[21] HAN W, FANG F. Fundamental aspects and recent developments in electropolishing[J]. International Journal of Machine Tools and Manufacture, 2019, 139: 1-23.
[22] BEZUIDENHOUT M, TER HAAR G, BECKER T, et al. The effect of HF-HNO3 chemical polishing on the surface roughness and fatigue life of laser powder bed fusion produced Ti6Al4V[J]. Materials Today Communications, 2020, 25: 101396.
[23] ROSA B, MOGNOL P, HASCOËT J Y. Laser polishing of additive laser manufacturing surfaces[J]. Journal of Laser Applications, 2015, 27(S2): S29102.
[24] PENG C, FU Y, WEI H, et al. Study on improvement of surface roughness and induced residual stress for additively manufactured metal parts by abrasive flow machining[J]. Procedia CIRP, 2018, 71: 386-389.
[25] 王宣平,段合露,孙玉文,高航.增材制造金属零件抛光加工技术研究进展[J].表面技术,2020,49(04):1-10.
[26] BOULAND C, URLEA V, BEAUBIER K, et al. Abrasive flow machining of laser powder bed-fused parts: Numerical modeling and experimental validation. Journal of Materials Processing Technology, 2019, 273: 116262.
[27] FANG Z.H, LU L.B, CHEN L.F, et al. Laser polishing of additive manufactured superalloy. Procedia CIRP, 2018, 71: 150-154.
[28] 廖聪豪, 周静, 沈洪. 增材制造TC4钛合金在激光抛光前后的电化学腐蚀性能. 中国激光, 2020, 47(01): 89-95.
[29] TYAGI P, GOULET T, RISO C, et al. Reducing the roughness of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing. Additive Manufacturing, 2019, 25: 32-38.
[30] DEMIR A.G, PREVITALI B. Additive manufacturing of cardiovascular CoCr stents by selective laser melting. Materials & Design, 2017, 119: 338-350.
[31] 马宁, 由艺强. 激光选区溶化TC4钛合金在氨基磺酸-甲酰胺溶液中的电解抛光. 电镀与涂饰, 2021, 40(1): 65-70.
[32] YANG L, LAUGEL N, HOUSDEN J, et al. Plasma additive layer manufacture smoothing (PALMS) technology–An industrial prototype machine development and a comparative study on both additive manufactured and conventional machined AISI 316 stainless steel[J]. Additive Manufacturing, 2020, 34: 101204.
[33] YEROKHIN A L, NIE X, LEYLAND A, et al. Plasma electrolysis for surface engineering[J]. Surface and coatings technology, 1999, 122(2-3): 73-93.
[34] VOGT H, STEPHAN K. Local microprocesses at gas-evolving electrodes and their influence on mass transfer. Electrochimica Acta, 2015, 155: 348-356.
[35] SLUGINOV N. On luminous phenomen, observed in liquids during electrolysis[J]. Russ. Phys. Chem. Soc, 1880, 12: 193-203.
[36] WANG J, SUO L C, GUAN L L, et al. Optimization of processing parameters for electrolysis and plasma polishing[C]//Applied Mechanics and Materials. Trans Tech Publications Ltd, 2012, 217: 1368-1371.
[37] ZHOU C, SU H, QIAN N, et al. Characteristics and function of vapour gaseous envelope fluctuation in plasma electrolytic polishing[J]. The International Journal of Advanced Manufacturing Technology, 2022: 1-11.
[38] DANILOV I, HACKERT-OSCHÄTZCHEN M, ZINECKER M, et al. Process understanding of plasma electrolytic polishing through multiphysics simulation and inline metrology[J]. Micromachines, 2019, 10(3): 214.
[39] BELKIN P N, KUSMANOV S A, PARFENOV E V. Mechanism and technological opportunity of plasma electrolytic polishing of metals and alloys surfaces[J]. Applied Surface Science Advances, 2020, 1: 100016.
[40] PARFENOV E V, YEROKHIN A, NEVYANTSEVA R R, et al. Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling[J]. Surface and Coatings Technology, 2015, 269: 2-22.
[41] PARFENOV E V, FARRAKHOV R G, MUKAEVA V R, et al. Electric field effect on surface layer removal during electrolytic plasma polishing[J]. Surface and Coatings Technology, 2016, 307: 1329-1340.
[42] HICKLING A, INGRAM M D. Contact glow-discharge electrolysis[J]. Transactions of the Faraday Society, 1964, 60: 783-793.
[43] YEROKHIN A, MUKAEVA V R, PARFENOV E V, et al. Charge transfer mechanisms underlying contact glow discharge electrolysis[J]. Electrochimica Acta, 2019, 312: 441-456.
[44] GUPTA P, TENHUNDFELD G, DAIGLE E O, et al. Electrolytic plasma technology: Science and engineering—An overview[J]. Surface and Coatings Technology, 2007, 201(21): 8746-8760.
[45] ZEIDLER H, BOETTGER-HILLER F, EDELMANN J, et al. Surface finish machining of medical parts using plasma electrolytic polishing[J]. Procedia CIRP, 2016, 49: 83-87.
[46] DURADJI V N, KAPUTKIN D E, DURADJI A Y. Aluminum Treatment in the Electrolytic Plasma During the Anodic Process[J]. Journal of Engineering Science & Technology Review, 2017, 10(3).
[47] SMYSLOVA M K, TAMINDAROV D R, PLOTNIKOV N V, et al. Surface electrolytic-plasma polishing of Ti-6Al-4V alloy with ultrafine-grained structure produced by severe plastic deformation[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018, 461(1): 012079.
[48] CORNELSEN M, DEUTSCH C, SEITZ H. Influence of the velocity and the number of polishing passages on the roughness of electrolytic plasma polished pipe inner surfaces[J]. Metals, 2018, 8(5): 330.
[49] USHOMIRSKAYA L A, BARON Y M, KUZMICHEV I S. Design of special device for the forced electrolytic-plasma polishing of internal surfaces by counter flows[C]//Key Engineering Materials. Trans Tech Publications Ltd, 2019, 822: 610-616.
[50] RADKEVICH M M, KUZMICHEV I S. Technological principles of internal surfaces finishing by forced electrolytic-plasma polishing[C]//Key Engineering Materials. Trans Tech Publications Ltd, 2019, 822: 634-639.
[51] NEVYANTSEVA R R, GORBATKOV S A, PARFENOV E V, et al. The influence of vapor–gaseous envelope behavior on plasma electrolytic coating removal[J]. Surface and Coatings Technology, 2001, 148(1): 30-37.
[52] NESTLER K, BÖTTGER-HILLER F, ADAMITZKI W, et al. Plasma electrolytic polishing–an overview of applied technologies and current challenges to extend the polishable material range[J]. Procedia Cirp, 2016, 42: 503-507.
[53] BÖTTGER-HILLER F, NESTLER K, ZEIDLER H, et al. Plasma electrolytic polishing of metalized carbon fibers[J]. AIMS Mater. Sci, 2016, 3: 260-269.
[54] PODHORSKÝ Š, BAJČIČÁK M. Plasma polishing of stainless steels–the electrolyte concentration vs. gloss level[J]. Vedecké Práce Materiálovotechnologickej Fakulty Slovenskej Technickej Univerzity v Bratislave so Sídlom v Trnave, 2018, 26(42): 171-176.
[55] VANA D, PODHORSKY S, HURAJT M, et al. Surface properties of the stainless steel X10 CrNi 18/10 after aplication of plasma polishing in electrolyte[J]. Int. J. Mod. Eng. Res, 2013, 3: 788-792.
[56] VANA D, PODHORSKÝ S, SUBA R, et al. The Change of Surface Properties on Tested Smooth Metal Surfaces after Plasma Polishing[J]. Annals of the Faculty of Engineering Hunedoara, 2013, 11(3): 65.
[57] TERENT’EV V F, SLIZOV A K, SMYSLOV A M, et al. Effect of Electrolytic-Plasma Polishing on the Mechanical Properties of Austenitic–Martensitic VNS9-Sh TRIP Steel[J]. Russian Metallurgy (Metally), 2020, 2020(10): 1199-1206.
[58] KUSMANOV S A, TAMBOVSKIY I V, KORABLEVA S S, et al. Enhancement of wear and corrosion resistance in medium carbon steel by plasma electrolytic nitriding and polishing[J]. Journal of Materials Engineering and Performance, 2019, 28(9): 5425-5432.
[59] KUSMANOV S A, SILKIN S A, BELKIN P N. Effect of Plasma-Electrolytic Polishing on the Corrosion Resistance of Structural Steels after Their Anodic Saturation with Nitrogen, Boron, and Carbon[J]. Russian Journal of Electrochemistry, 2020, 56(4): 356-364.
[60] REINHARDT F, BÖTTGER-HILLER F, KRANHOLD C, et al. Surface modification for corrosion resistance of electric conductive metal surfaces with plasma electrolytic polishing[C]//AIP Conference Proceedings. AIP Publishing LLC, 2019, 2113(1): 110009.
[61] LÖBER L, FLACHE C, PETTERS R, et al. Comparison of different post processing technologies for SLM generated 316l steel parts[J]. Rapid Prototyping Journal, 2013.
[62] KAIN M, LOALDI D, DAVOUDINEJAD A, et al. Dimensional and Form Characterization of a Benchmarking Specimen Subjected to Different Post‐Processing Technologies for Metal Additive Manufacturing[C]//Joint Special Interest Group meeting between euspen and ASPE Advancing Precision in Additive Manufacturing. The European Society for Precision Engineering and Nanotechnology, 2019: 104-5.
[63] LOALDI D, KAIN M, HAAHR-LILLEVANG L, et al. Comparison of Selective Laser Melting Post-Processes based on Amplitude and Functional Surface Roughness parameters[C]//Joint Special Interest Group meeting between euspen and ASPE Advancing Precision in Additive Manufacturing. 2019.
[64] KASHAPOV L N, KASHAPOV N F, KASHAPOV R N, et al. Plasma electrolytic treatment of products after selective laser melting[C]//Journal of Physics: Conference Series. IOP Publishing, 2016, 669(1): 012029.
[65] ZEIDLER H, BOETTGER-HILLER F, EDELMANN J, et al. Surface finish machining of medical parts using Plasma electrolytic Polishing[J]. Procedia CIRP, 2016, 49: 83-87.
[66] ABLYAZ T R, MURATOV K R, RADKEVICH M M, et al. Electrolytic plasma surface polishing of complex components produced by selective laser melting[J]. Russian Engineering Research, 2018, 38(6): 491-492.
[67] SEO B, PARK H K, KIM H G, et al. Corrosion behavior of additive manufactured CoCr parts polished with plasma electrolytic polishing[J]. Surface and Coatings Technology, 2021, 406: 126640.
[68] WANG J, SUO L C, GUAN L L, et al. Analytical study on mechanism of electrolysis and plasma polishing[C]//Advanced Materials Research. Trans Tech Publications Ltd, 2012, 472: 350-353.
[69] 王季. 金属表面电解质等离子抛光及其工艺的研究[D].哈尔滨工业大学,2013.
[70] 张笃飞. 电解质-等离子加工技术中电解液作用的研究[D].哈尔滨工业大学,2011.
[71] 薛浩. 铝合金的电解质-等离子抛光工艺参数及试验装置研究[D].哈尔滨工业大学,2013.
[72] 刘登卫. 不锈钢制品内表面电解质等离子抛光技术的研究及应用[D].哈尔滨工业大学,2017.
[73] 杨子灿. 钛合金电解质等离子抛光装置的设计[D].哈尔滨工业大学,2020.
[74] 段海栋,孙桓五,纪刚强, 等.不锈钢电解质等离子体抛光表层元素化学形态演变及界面反应[J/OL].表面技术:1-10.
[75] 段海栋, 孙桓五, 纪刚强, 等. 电解质等离子体抛光 316LVM 表面形貌及电化学特性[J]. 表面技术, 2021, 50(8): 396-403.
[76] 黄璐琦. 等离子体增强电化学抛光奥氏体不锈钢表面状态的研究[D].西安理工大学,2019.
[77] KELLOGG H H. Anode effect in aqueous electrolysis[J]. Journal of the electrochemical society, 1950, 97(4): 133.
[78] 杨世铭, 陶文铨. 传热学.第4版[M]. 高等教育出版社, 2006.
[79] SNIZHKO L O, YEROKHIN A L, GUREVINA N L, et al. Excessive oxygen evolution during plasma electrolytic oxidation of aluminium[J]. Thin Solid Films, 2007, 516(2-4): 460-464.
[80] ANGULO A, VAN DER LINDE P, GARDENIERS H, et al. Influence of bubbles on the energy conversion efficiency of electrochemical reactors[J]. Joule, 2020, 4(3): 555-579.
[81] HSU Y Y. On the size range of active nucleation cavities on a heating surface[J]. 1962.
[82] HSU Y Y, GRAHAM R W. An analytical and experimental study of the thermal boundary layer and ebullition cycle in nucleate boiling[M]. National Aeronautics and Space Administration, 1961.
[83] 王安良,吴玉庭,杨春信.沸腾表面凹坑的尺度分布特征[J].热能动力工程,2003(03):291-296+326.
[84] ZUBER N. The dynamics of vapor bubbles in nonuniform temperature fields[J]. International Journal of Heat and Mass Transfer, 1961, 2(1-2): 83-98.
[85] GIGOSOS M A, GONZALEZ M A, CARDENOSO V. Computer simulated Balmer-alpha,-beta and-gamma Stark line profiles for non-equilibrium plasmas diagnostics[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2003, 58(8): 1489-1504.
[86] GANGAL U, SRIVASTAVA M, GUPTA S K S. Mechanism of the breakdown of normal electrolysis and the transition to contact glow discharge electrolysis[J]. Journal of the Electrochemical Society, 2009, 156(10): F131.
[87] DUNLEAVY C S, GOLOSNOY I O, CURRAN J A, et al. Characterisation of discharge events during plasma electrolytic oxidation[J]. Surface and Coatings Technology, 2009, 203(22): 3410-3419.
[88] HUSSEIN R O, NIE X, NORTHWOOD D O, et al. Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process[J]. Journal of Physics D: Applied Physics, 2010, 43(10): 105203.
修改评论