中文版 | English
题名

高压电化学抛光增材制造件基础机理解析与方法探索

其他题名
BASIC MECHANISM ANALYSIS AND METHOD EXPLORATION OF HIGH-VOLTAGE ELECTROCHEMICAL POLISHING ON ADDITIVE MANUFACTURING PARTS
姓名
姓名拼音
LIU Bowen
学号
12032447
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
赵永华
导师单位
机械与能源工程系
论文答辩日期
2022-05-10
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

表面粗糙度成为当下制约金属增材制造技术应用的主要因素之一。高压电化学抛光方法(约>100 V)不受材料硬度、刚度和形状限制,抛光后无表面损伤层、残余应力,是高质高效实现增材构件绿色抛光的理想手段之一,但高压电化学抛光理论和工艺方法仍缺乏研究。

本文针对高压电化学抛光过程,基于现象学方法系统研究了高压电化学的区间划分理论,揭示了高压电化学过程的声信号、光信号、电信号特征,区分开等离子体电解抛光和电解等离子体抛光两种抛光模式。

通过高压电化学阳极界面效应的可视化观测和过程传热分析,揭示了电解/沸腾共同作用下的气泡-气膜行为及其演变过程,构建了电解-沸腾共同作用下的气泡成核与生长模型。在此基础上,提出并开发了一种核态沸腾电化学整平(Nucleate Boiling Electrochemical Leveling, NBEL)的新方法,利用工件表面气泡对电化学溶解过程的屏蔽、调控和强化作用实现了大原始粗糙度(Ra10 μm)增材制造件的高效整平。

通过对等离子体-电化学耦合行为及其特性进行分析,明确了等离子体的产生条件和形成过程。进一步结合光谱诊断研究等离子体的演变规律和主要成分,讨论了高压电化学过程中的等离子体物理化学特性及其对抛光结果影响。

针对增材制造件的表面特点,提出分步式高压电化学抛光方法。通过电压和电解液温度调控,使核态沸腾电化学整平、等离子体电解抛光和电解等离子体抛光三种模式原位融合,实现了增材制造件大粗糙度表面的高效高质抛光。

研究成果可以支撑增材制造产业发展,为高压电化学研究提供理论依据和技术积累。

其他摘要

Surface roughness has become one of the main factors restricting the application of metal additive manufacturing technology. The high-voltage electrochemical polishing (HEP) method (about >100 V) is free of damage and stress regardless of material hardness, stiffness, and shape, making it one ideal approach to achieving high-quality polishing of additive components. However, the theory and basic laws are still unclear.

Aiming at the HEP process, the regime division theory of high-voltage electrochemistry was systematically studied based on phenomenological method. And the characteristics of the acoustic signal, optical signal and V-A signal of the high-voltage electrochemical process were revealed. For the first time, two polishing modes of plasma electropolishing and electrolytic plasma polishing were distinguished.

Through visual observation of the high-voltage electrochemical anode interface reactions and the heat transfer analysis, the bubble-gas film behavior and evolution process under the combined effect of electrolysis and boiling were revealed, and the model of bubble nucleation and growth was established. On this basis, a new method of Nucleate Boiling Electrochemical Leveling (NBEL) was creatively proposed and developed, which utilizes the shielding, regulating and strengthening effects of bubbles on the surface of the workpiece to the electrochemical dissolution process. High-efficiency leveling of additively manufactured components with large original roughness (Ra>10 μm) was achieved.

By analyzing the coupling behaviour of electrochemical-plasma and its heat transfer condition, the generation conditions and formation process of plasma were clarified. Furthermore, the evolution law and main composition of the plasma were studied in combination with the optical spectral diagnosis. And the physical and chemical properties of the plasma in the high-voltage electrochemical process and their influence on the polishing results were clarified.

According to the surface characteristics of additive manufactured parts, a step-wise high-voltage electrochemical polishing method was proposed. Through the regulation of voltage and electrolyte temperature, the three modes of interface-boiling electrochemical leveling, plasma electropolishing, and electrolytic plasma polishing were in-situ integrated, realizing high-quality polishing of large roughness surfaces of additive manufactured parts.

The research results can support the development of the additive manufacturing industry and provide theoretical basis and technical accumulation for high-voltage electrochemistry research.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B: Engineering, 2018, 143: 172-196.
[2] LAKHDAR Y, TUCK C, BINNER J, et al. Additive manufacturing of advanced ceramic materials[J]. Progress in Materials Science, 2020: 100736.
[3] ASKARI M, HUTCHINS D A, THOMAS P J, et al. Additive manufacturing of metamaterials: A review[J]. Additive Manufacturing, 2020: 101562.
[4] HERZOG D, SEYDA V, WYCISK E, et al. Additive manufacturing of metals[J]. Acta Materialia, 2016, 117: 371-392.
[5] 樊恩想,刘小欣,廖文俊,付超,苏青.金属增材制造的现状与发展[J].机械制造,2019,57(04):1-6+10.
[6] 叶梓恒. Ti6Al4V胫骨植入体个性化设计及其激光选区熔化制造工艺研究[D].华南理工大学,2014.
[7] LIU S, SHIN Y C. Additive manufacturing of Ti6Al4V alloy: A review[J]. Materials & Design, 2019, 164: 107552.
[8] VYAS C, POOLOGASUNDARAMPILLAI G, HOYLAND J, et al. 3D printing of biocomposites for osteochondral tissue engineering[M]//Biomedical Composites. Woodhead Publishing, 2017: 261-302.
[9] ZHANG B, LI Y, BAI Q. Defect formation mechanisms in selective laser melting: a review[J]. Chinese Journal of Mechanical Engineering, 2017, 30(3): 515-527.
[10] KIM F H, KIM F H, MOYLAN S P. Literature review of metal additive manufacturing defects[M]. US Department of Commerce, National Institute of Standards and Technology, 2018.
[11] ZHOU X, LIU X, ZHANG D, et al. Balling phenomena in selective laser melted tungsten[J]. Journal of Materials Processing Technology, 2015, 222: 33-42.
[12] WANG L, LI E L, SHEN H, et al. Adhesion effects on spreading of metal powders in selective laser melting[J]. Powder Technology, 2020, 363: 602-610.
[13] 麦淑珍,杨永强,王迪.激光选区熔化成型NiCr合金曲面表面形貌及粗糙度变化规律研究[J].中国激光,2015,42(12):96-105.
[14] 李剑. IN718合金的选区激光熔化成形工艺及性能研究[D].哈尔滨理工大学,2018.
[15] 王延庆,沈竞兴,吴海全.3D打印材料应用和研究现状[J].航空材料学报,2016,36(04):89-98.
[16] LEWANDOWSKI J J, SEIFI M. Metal additive manufacturing: a review of mechanical properties[J]. Annual review of materials research, 2016, 46: 151-186.
[17] GUO N, LEU M C. Additive manufacturing: technology, applications and research needs[J]. Frontiers of Mechanical Engineering, 2013, 8(3): 215-243.
[18] CHEN Y, PENG X, KONG L, et al. Defect inspection technologies for additive manufacturing[J]. International Journal of Extreme Manufacturing, 2021, 3(2): 022002.
[19] KUMBHAR N N, MULAY A V. Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review[J]. Journal of The Institution of Engineers (India): Series C, 2018, 99(4): 481-487.
[20] LEE J Y, NAGALINGAM A P, YEO S H. A review on the state-of-the-art of surface finishing processes and related ISO/ASTM standards for metal additive manufactured components[J]. Virtual and physical prototyping, 2021, 16(1): 68-96.
[21] HAN W, FANG F. Fundamental aspects and recent developments in electropolishing[J]. International Journal of Machine Tools and Manufacture, 2019, 139: 1-23.
[22] BEZUIDENHOUT M, TER HAAR G, BECKER T, et al. The effect of HF-HNO3 chemical polishing on the surface roughness and fatigue life of laser powder bed fusion produced Ti6Al4V[J]. Materials Today Communications, 2020, 25: 101396.
[23] ROSA B, MOGNOL P, HASCOËT J Y. Laser polishing of additive laser manufacturing surfaces[J]. Journal of Laser Applications, 2015, 27(S2): S29102.
[24] PENG C, FU Y, WEI H, et al. Study on improvement of surface roughness and induced residual stress for additively manufactured metal parts by abrasive flow machining[J]. Procedia CIRP, 2018, 71: 386-389.
[25] 王宣平,段合露,孙玉文,高航.增材制造金属零件抛光加工技术研究进展[J].表面技术,2020,49(04):1-10.
[26] BOULAND C, URLEA V, BEAUBIER K, et al. Abrasive flow machining of laser powder bed-fused parts: Numerical modeling and experimental validation. Journal of Materials Processing Technology, 2019, 273: 116262.
[27] FANG Z.H, LU L.B, CHEN L.F, et al. Laser polishing of additive manufactured superalloy. Procedia CIRP, 2018, 71: 150-154.
[28] 廖聪豪, 周静, 沈洪. 增材制造TC4钛合金在激光抛光前后的电化学腐蚀性能. 中国激光, 2020, 47(01): 89-95.
[29] TYAGI P, GOULET T, RISO C, et al. Reducing the roughness of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing. Additive Manufacturing, 2019, 25: 32-38.
[30] DEMIR A.G, PREVITALI B. Additive manufacturing of cardiovascular CoCr stents by selective laser melting. Materials & Design, 2017, 119: 338-350.
[31] 马宁, 由艺强. 激光选区溶化TC4钛合金在氨基磺酸-甲酰胺溶液中的电解抛光. 电镀与涂饰, 2021, 40(1): 65-70.
[32] YANG L, LAUGEL N, HOUSDEN J, et al. Plasma additive layer manufacture smoothing (PALMS) technology–An industrial prototype machine development and a comparative study on both additive manufactured and conventional machined AISI 316 stainless steel[J]. Additive Manufacturing, 2020, 34: 101204.
[33] YEROKHIN A L, NIE X, LEYLAND A, et al. Plasma electrolysis for surface engineering[J]. Surface and coatings technology, 1999, 122(2-3): 73-93.
[34] VOGT H, STEPHAN K. Local microprocesses at gas-evolving electrodes and their influence on mass transfer. Electrochimica Acta, 2015, 155: 348-356.
[35] SLUGINOV N. On luminous phenomen, observed in liquids during electrolysis[J]. Russ. Phys. Chem. Soc, 1880, 12: 193-203.
[36] WANG J, SUO L C, GUAN L L, et al. Optimization of processing parameters for electrolysis and plasma polishing[C]//Applied Mechanics and Materials. Trans Tech Publications Ltd, 2012, 217: 1368-1371.
[37] ZHOU C, SU H, QIAN N, et al. Characteristics and function of vapour gaseous envelope fluctuation in plasma electrolytic polishing[J]. The International Journal of Advanced Manufacturing Technology, 2022: 1-11.
[38] DANILOV I, HACKERT-OSCHÄTZCHEN M, ZINECKER M, et al. Process understanding of plasma electrolytic polishing through multiphysics simulation and inline metrology[J]. Micromachines, 2019, 10(3): 214.
[39] BELKIN P N, KUSMANOV S A, PARFENOV E V. Mechanism and technological opportunity of plasma electrolytic polishing of metals and alloys surfaces[J]. Applied Surface Science Advances, 2020, 1: 100016.
[40] PARFENOV E V, YEROKHIN A, NEVYANTSEVA R R, et al. Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling[J]. Surface and Coatings Technology, 2015, 269: 2-22.
[41] PARFENOV E V, FARRAKHOV R G, MUKAEVA V R, et al. Electric field effect on surface layer removal during electrolytic plasma polishing[J]. Surface and Coatings Technology, 2016, 307: 1329-1340.
[42] HICKLING A, INGRAM M D. Contact glow-discharge electrolysis[J]. Transactions of the Faraday Society, 1964, 60: 783-793.
[43] YEROKHIN A, MUKAEVA V R, PARFENOV E V, et al. Charge transfer mechanisms underlying contact glow discharge electrolysis[J]. Electrochimica Acta, 2019, 312: 441-456.
[44] GUPTA P, TENHUNDFELD G, DAIGLE E O, et al. Electrolytic plasma technology: Science and engineering—An overview[J]. Surface and Coatings Technology, 2007, 201(21): 8746-8760.
[45] ZEIDLER H, BOETTGER-HILLER F, EDELMANN J, et al. Surface finish machining of medical parts using plasma electrolytic polishing[J]. Procedia CIRP, 2016, 49: 83-87.
[46] DURADJI V N, KAPUTKIN D E, DURADJI A Y. Aluminum Treatment in the Electrolytic Plasma During the Anodic Process[J]. Journal of Engineering Science & Technology Review, 2017, 10(3).
[47] SMYSLOVA M K, TAMINDAROV D R, PLOTNIKOV N V, et al. Surface electrolytic-plasma polishing of Ti-6Al-4V alloy with ultrafine-grained structure produced by severe plastic deformation[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018, 461(1): 012079.
[48] CORNELSEN M, DEUTSCH C, SEITZ H. Influence of the velocity and the number of polishing passages on the roughness of electrolytic plasma polished pipe inner surfaces[J]. Metals, 2018, 8(5): 330.
[49] USHOMIRSKAYA L A, BARON Y M, KUZMICHEV I S. Design of special device for the forced electrolytic-plasma polishing of internal surfaces by counter flows[C]//Key Engineering Materials. Trans Tech Publications Ltd, 2019, 822: 610-616.
[50] RADKEVICH M M, KUZMICHEV I S. Technological principles of internal surfaces finishing by forced electrolytic-plasma polishing[C]//Key Engineering Materials. Trans Tech Publications Ltd, 2019, 822: 634-639.
[51] NEVYANTSEVA R R, GORBATKOV S A, PARFENOV E V, et al. The influence of vapor–gaseous envelope behavior on plasma electrolytic coating removal[J]. Surface and Coatings Technology, 2001, 148(1): 30-37.
[52] NESTLER K, BÖTTGER-HILLER F, ADAMITZKI W, et al. Plasma electrolytic polishing–an overview of applied technologies and current challenges to extend the polishable material range[J]. Procedia Cirp, 2016, 42: 503-507.
[53] BÖTTGER-HILLER F, NESTLER K, ZEIDLER H, et al. Plasma electrolytic polishing of metalized carbon fibers[J]. AIMS Mater. Sci, 2016, 3: 260-269.
[54] PODHORSKÝ Š, BAJČIČÁK M. Plasma polishing of stainless steels–the electrolyte concentration vs. gloss level[J]. Vedecké Práce Materiálovotechnologickej Fakulty Slovenskej Technickej Univerzity v Bratislave so Sídlom v Trnave, 2018, 26(42): 171-176.
[55] VANA D, PODHORSKY S, HURAJT M, et al. Surface properties of the stainless steel X10 CrNi 18/10 after aplication of plasma polishing in electrolyte[J]. Int. J. Mod. Eng. Res, 2013, 3: 788-792.
[56] VANA D, PODHORSKÝ S, SUBA R, et al. The Change of Surface Properties on Tested Smooth Metal Surfaces after Plasma Polishing[J]. Annals of the Faculty of Engineering Hunedoara, 2013, 11(3): 65.
[57] TERENT’EV V F, SLIZOV A K, SMYSLOV A M, et al. Effect of Electrolytic-Plasma Polishing on the Mechanical Properties of Austenitic–Martensitic VNS9-Sh TRIP Steel[J]. Russian Metallurgy (Metally), 2020, 2020(10): 1199-1206.
[58] KUSMANOV S A, TAMBOVSKIY I V, KORABLEVA S S, et al. Enhancement of wear and corrosion resistance in medium carbon steel by plasma electrolytic nitriding and polishing[J]. Journal of Materials Engineering and Performance, 2019, 28(9): 5425-5432.
[59] KUSMANOV S A, SILKIN S A, BELKIN P N. Effect of Plasma-Electrolytic Polishing on the Corrosion Resistance of Structural Steels after Their Anodic Saturation with Nitrogen, Boron, and Carbon[J]. Russian Journal of Electrochemistry, 2020, 56(4): 356-364.
[60] REINHARDT F, BÖTTGER-HILLER F, KRANHOLD C, et al. Surface modification for corrosion resistance of electric conductive metal surfaces with plasma electrolytic polishing[C]//AIP Conference Proceedings. AIP Publishing LLC, 2019, 2113(1): 110009.
[61] LÖBER L, FLACHE C, PETTERS R, et al. Comparison of different post processing technologies for SLM generated 316l steel parts[J]. Rapid Prototyping Journal, 2013.
[62] KAIN M, LOALDI D, DAVOUDINEJAD A, et al. Dimensional and Form Characterization of a Benchmarking Specimen Subjected to Different Post‐Processing Technologies for Metal Additive Manufacturing[C]//Joint Special Interest Group meeting between euspen and ASPE Advancing Precision in Additive Manufacturing. The European Society for Precision Engineering and Nanotechnology, 2019: 104-5.
[63] LOALDI D, KAIN M, HAAHR-LILLEVANG L, et al. Comparison of Selective Laser Melting Post-Processes based on Amplitude and Functional Surface Roughness parameters[C]//Joint Special Interest Group meeting between euspen and ASPE Advancing Precision in Additive Manufacturing. 2019.
[64] KASHAPOV L N, KASHAPOV N F, KASHAPOV R N, et al. Plasma electrolytic treatment of products after selective laser melting[C]//Journal of Physics: Conference Series. IOP Publishing, 2016, 669(1): 012029.
[65] ZEIDLER H, BOETTGER-HILLER F, EDELMANN J, et al. Surface finish machining of medical parts using Plasma electrolytic Polishing[J]. Procedia CIRP, 2016, 49: 83-87.
[66] ABLYAZ T R, MURATOV K R, RADKEVICH M M, et al. Electrolytic plasma surface polishing of complex components produced by selective laser melting[J]. Russian Engineering Research, 2018, 38(6): 491-492.
[67] SEO B, PARK H K, KIM H G, et al. Corrosion behavior of additive manufactured CoCr parts polished with plasma electrolytic polishing[J]. Surface and Coatings Technology, 2021, 406: 126640.
[68] WANG J, SUO L C, GUAN L L, et al. Analytical study on mechanism of electrolysis and plasma polishing[C]//Advanced Materials Research. Trans Tech Publications Ltd, 2012, 472: 350-353.
[69] 王季. 金属表面电解质等离子抛光及其工艺的研究[D].哈尔滨工业大学,2013.
[70] 张笃飞. 电解质-等离子加工技术中电解液作用的研究[D].哈尔滨工业大学,2011.
[71] 薛浩. 铝合金的电解质-等离子抛光工艺参数及试验装置研究[D].哈尔滨工业大学,2013.
[72] 刘登卫. 不锈钢制品内表面电解质等离子抛光技术的研究及应用[D].哈尔滨工业大学,2017.
[73] 杨子灿. 钛合金电解质等离子抛光装置的设计[D].哈尔滨工业大学,2020.
[74] 段海栋,孙桓五,纪刚强, 等.不锈钢电解质等离子体抛光表层元素化学形态演变及界面反应[J/OL].表面技术:1-10.
[75] 段海栋, 孙桓五, 纪刚强, 等. 电解质等离子体抛光 316LVM 表面形貌及电化学特性[J]. 表面技术, 2021, 50(8): 396-403.
[76] 黄璐琦. 等离子体增强电化学抛光奥氏体不锈钢表面状态的研究[D].西安理工大学,2019.
[77] KELLOGG H H. Anode effect in aqueous electrolysis[J]. Journal of the electrochemical society, 1950, 97(4): 133.
[78] 杨世铭, 陶文铨. 传热学.第4版[M]. 高等教育出版社, 2006.
[79] SNIZHKO L O, YEROKHIN A L, GUREVINA N L, et al. Excessive oxygen evolution during plasma electrolytic oxidation of aluminium[J]. Thin Solid Films, 2007, 516(2-4): 460-464.
[80] ANGULO A, VAN DER LINDE P, GARDENIERS H, et al. Influence of bubbles on the energy conversion efficiency of electrochemical reactors[J]. Joule, 2020, 4(3): 555-579.
[81] HSU Y Y. On the size range of active nucleation cavities on a heating surface[J]. 1962.
[82] HSU Y Y, GRAHAM R W. An analytical and experimental study of the thermal boundary layer and ebullition cycle in nucleate boiling[M]. National Aeronautics and Space Administration, 1961.
[83] 王安良,吴玉庭,杨春信.沸腾表面凹坑的尺度分布特征[J].热能动力工程,2003(03):291-296+326.
[84] ZUBER N. The dynamics of vapor bubbles in nonuniform temperature fields[J]. International Journal of Heat and Mass Transfer, 1961, 2(1-2): 83-98.
[85] GIGOSOS M A, GONZALEZ M A, CARDENOSO V. Computer simulated Balmer-alpha,-beta and-gamma Stark line profiles for non-equilibrium plasmas diagnostics[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2003, 58(8): 1489-1504.
[86] GANGAL U, SRIVASTAVA M, GUPTA S K S. Mechanism of the breakdown of normal electrolysis and the transition to contact glow discharge electrolysis[J]. Journal of the Electrochemical Society, 2009, 156(10): F131.
[87] DUNLEAVY C S, GOLOSNOY I O, CURRAN J A, et al. Characterisation of discharge events during plasma electrolytic oxidation[J]. Surface and Coatings Technology, 2009, 203(22): 3410-3419.
[88] HUSSEIN R O, NIE X, NORTHWOOD D O, et al. Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process[J]. Journal of Physics D: Applied Physics, 2010, 43(10): 105203.

所在学位评定分委会
机械与能源工程系
国内图书分类号
TG669
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335953
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
刘博文. 高压电化学抛光增材制造件基础机理解析与方法探索[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032447-刘博文-机械与能源工程(23260KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘博文]的文章
百度学术
百度学术中相似的文章
[刘博文]的文章
必应学术
必应学术中相似的文章
[刘博文]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。