[1] DEKKER H, D'ODORICO S, KAUFER A, et al. Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory[C]. Optical and IR Telescope Instrumentation and Detectors. SPIE, 2000, 4008: 534-545.
[2] HASHIMOTO F, YAMAGUCHI H, KRAJNIK P, et al. Abrasive fine-finishing technology[J]. CIRP Annals, 2016, 65(2): 597-620.
[3] TONG W M, TAYLOR J S, HECTOR S D, et al. Mask substrate requirements and development for extreme ultraviolet lithography (EUVL)[C]. 19th Annual Symposium on Photomask Technology. SPIE, 1999, 3873: 421-428.
[4] PROGLER C, GREEN M, BONAM R K, et al. EUV mask challenges and requirements for ultimate single exposure interconnects[C]. Extreme Ultraviolet (EUV) Lithography X. SPIE, 2019, 10957: 122-135.
[5] KUMAR M, KUMAR A, ALOK A, et al. Magnetorheological method applied to optics polishing: A review[J]. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2020, 804(1): 012012.
[6] TURLEY C, RANKIN J, CHEN X, et al. EUV mask flatness compensation strategies and requirements for reticle flatness, scanner optimization and E-beam writer (Conference Presentation)[C]. SPIE, 2017, 10450: 104500A.
[7] KIM J S, AHN J. Mask materials and designs for extreme ultra violet lithography[J]. Electronic Materials Letters, 2018, 14(5): 533-547.
[8] TURLEY C, RANKIN J, CHEN X, et al. EUV mask flatness compensation strategies and requirements for reticle flatness, scanner optimization and E-beam writer (Conference Presentation)[C]. International Conference on Extreme Ultraviolet Lithography 2017. International Society for Optics and Photonics, 2017, 10450: 104500A.
[9] VLADIMIRSKY Y, TAYLOR J S, SOMMARGREN G E, et al. Fabrication and testing of optics for EUV projection lithography[C]. Emerging Lithographic Technologies II. SPIE, 1998, 3331: 580-590.
[10] RUBENCHIK A M, FRIT M D. Initiation, growth, and mitigation of UV-laser-induced damage in fused silica[C]. Laser-Induced Damage in Optical Materials: 2001. SPIE, 2002, 4679: 79-95.
[11] RAMAN R N, DEMOS S G, SHEN N, et al. Damage on fused silica optics caused by laser ablation of surface-bound microparticles[J]. Optics Express, 2016, 24(3): 2634-2647.
[12] BLOEMBERGEN N. Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics[J]. Applied optics, 1973, 12(4): 661-664.
[13] SURATWALA T I, MILLER P E, BUDE J D, et al. HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces[J]. Journal of the American Ceramic Society, 2011, 94(2): 416-428.
[14] LI Y, YUAN Z, WANG J, et al. Laser-induced damage characteristics in fused silica surface due to mechanical and chemical defects during manufacturing processes[J]. Optics & Laser Technology, 2017, 91: 149-158.
[15] LI Y, ZHENG N, LI H, et al. Morphology and distribution of subsurface damage in optical fused silica parts: Bound-abrasive grinding[J]. Applied Surface Science, 2011, 257(6): 2066-2073.
[16] BLAINEAU P, ANDRé D, LAHEURTE R, et al. Subsurface mechanical damage during bound abrasive grinding of fused silica glass[J]. Applied Surface Science, 2015, 353: 764-773.
[17] SURATWALA T, WONG L, MILLER P, et al. Sub-surface mechanical damage distributions during grinding of fused silica[J]. Journal of Non-Crystalline Solids, 2006, 352(52-54): 5601-5617.
[18] EVANS C J, PAUL E, DORNFELD D, et al. Material Removal Mechanisms in Lapping and Polishing[J]. CIRP Annals, 2003, 52(2): 611-633.
[19] LAUWERS B, KLOCKE F, KLINK A, et al. Hybrid processes in manufacturing[J]. CIRP Annals, 2014, 63(2): 561-583.
[20] ABIADE J T, CHOI W, SINGH R K. Effect of pH on ceria–silica interactions during chemical mechanical polishing[J]. Journal of Materials Research, 2005, 20(5): 1139-1145.
[21] LUO J, DORNFELD D A. Material removal mechanism in chemical mechanical polishing: theory and modeling[J]. IEEE transactions on semiconductor manufacturing, 2001, 14(2): 112-133.
[22] WANG L, ZHANG K, SONG Z, et al. Ceria concentration effect on chemical mechanical polishing of optical glass[J]. Applied Surface Science, 2007, 253(11): 4951-4954.
[23] WANG C, LIU Y, TIAN J, et al. Planarization properties of an alkaline slurry without an inhibitor on copper patterned wafer CMP[J]. Journal of Semiconductors, 2012, 33(11): 116001.
[24] ZHOU Y, PAN G, GONG H, et al. Characterization of sapphire chemical mechanical polishing performances using silica with different sizes and their removal mechanisms[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513: 153-159.
[25] SHI X L, CHEN G, XU L, et al. Achieving ultralow surface roughness and high material removal rate in fused silica via a novel acid SiO2 slurry and its chemical-mechanical polishing mechanism[J]. Applied Surface Science, 2020, 500: 144041.
[26] QIU Z, ZHOU L, FANG F, et al. Chemical mechanical grinding for quartz glass[J]. Optics and Precision Engineering, 2010, 18(7): 1554-1561.
[27] ZHOU L, SHIINA T, QIU Z, et al. Research on chemo-mechanical grinding of large size quartz glass substrate[J]. Precision Engineering, 2009, 33(4): 499-504.
[28] DONG Z, OU L, KANG R, et al. Photoelectrochemical mechanical polishing method for n-type gallium nitride[J]. CIRP Annals, 2019, 68(1): 205-208.
[29] TOH D, BUI P V, ISOHASHI A, et al. Catalyzed chemical polishing of SiO2 glasses in pure water[J]. Review of Scientific Instruments, 2019, 90(4): 045115.
[30] DENG H, YAMAMURA K. Atomic-scale flattening mechanism of 4H-SiC (0 0 0 1) in plasma assisted polishing[J]. CIRP Annals, 2013, 62(1): 575-578.
[31] CHKHALO N I, CHURIN S A, PESTOV A E, et al. Roughness measurement and ion-beam polishing of super-smooth optical surfaces of fused quartz and optical ceramics[J]. Optics Express, 2014, 22(17): 20094-20106.
[32] CHKALO N I, CHURIN S A, MIKHAYLENKO M S, et al. Ion-beam polishing of fused silica substrates for imaging soft x-ray and extreme ultraviolet optics[J]. Applied Optics, 2016, 55(6): 1249-1256.
[33] BORDATCHEV E V, HAHIZ A M K, TUTUNEA-FATAN O R. Performance of laser polishing in finishing of metallic surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(1): 35-52.
[34] ROSA B, MONGNOL P, HASCOëT J Y. Laser polishing of additive laser manufacturing surfaces[J]. Journal of Laser Applications, 2015, 27(S2): S29102.
[35] PFEFFERKORN F E, DUFFIE N A, MORROW J D, et al. Effect of beam diameter on pulsed laser polishing of S7 tool steel[J]. CIRP Annals, 2014, 63(1): 237-240.
[36] WANG Q, MORROW J D, MA C, et al. Surface prediction model for thermocapillary regime pulsed laser micro polishing of metals[J]. Journal of Manufacturing Processes, 2015, 20: 340-348.
[37] MARIMUTHU S, TRIANTAPHYLLOU A, ANTAR M, et al. Laser polishing of selective laser melted components[J]. International Journal of Machine Tools and Manufacture, 2015, 95: 97-104.
[38] BORDATCHEV E V, HAFIZ A M K, TUTUNEA-FATAN O R. Performance of laser polishing in finishing of metallic surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(1): 35-52.
[39] UKAR E, LAMIKIZ A, LóPEZ D L L N, et al. Laser polishing of tool steel with CO2 laser and high-power diode laser[J]. International Journal of Machine Tools and Manufacture, 2010, 50(1): 115-125.
[40] TEMMLER A, WILLENBORG E, WISSENBAH K. Laser polishing[C]. Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII. SPIE, 2012, 8243: 171-183.
[41] PIECHULLA P, BAUER J, BOEHM G, et al. Etch Mechanism and Temperature Regimes of an Atmospheric Pressure Chlorine-Based Plasma Jet Process[J]. Plasma Processes and Polymers, 2016, 13(11): 1128-1135.
[42] ARNOLD T, BöHM G, PAETZELT H. Ultra-Precision Surface Machining with Reactive Plasma Jets[J]. Contributions to Plasma Physics, 2014, 54(2): 145-154.
[43] TAKINO H, SHIBATA N, ITOH H, et al. Fabrication of optics by use of plasma chemical vaporization machining with a pipe electrode[J]. Applied Optics, 2002, 41(19): 3971-3977.
[44] MORI Y, YAMAUCHI K, YAMAMURA K, et al. Development of plasma chemical vaporization machining[J]. Review of Scientific Instruments, 2000, 71(12): 4627-4632.
[45] YAMAMURA K, TAKEDA Y, SAKAIYA S, et al. High-spatial Resolution Figuring by Pulse Width Modulation Controlled Plasma Chemical Vaporization Machining[J]. Procedia CIRP, 2016, 42: 508-511.
[46] TAKINO H, YAMAMURA K, SANO Y, et al. Shape correction of optical surfaces using plasma chemical vaporization machining with a hemispherical tip electrode[J]. Appl Optics, 2012, 51(3): 401-407.
[47] ATAD-ETTEDGUI E, VERMA Y, ANTEBI J, et al. Rapid damage-free shaping of silicon carbide using reactive atom plasma (RAP) processing[C]. Optomechanical Technologies for Astronomy. SPIE, 2006, 6273: 91-98.
[48] CASTELLI M, JOURDAIN R, MORANTZ P, et al. Rapid optical surface figuring using reactive atom plasma[J]. Precision Engineering, 2012, 36(3): 467-476.
[49] JOURDAIN R, CASTELLI M, SHORE P, et al. Reactive atom plasma (RAP) figuring machine for meter class optical surfaces[J]. Production Engineering, 2013, 7(6): 665-673.
[50] CASTELLI M, JOURDAIN R, MORANTZ P, et al. Reactive Atom Plasma for Rapid Figure Correction of Optical Surfaces[J]. Key Engineering Materials, 2012, 496: 182-187.
[51] 辛强.大气感应耦合等离子体射流特性与加工表面演变机理研究[D].哈尔滨工业大学, 2017.
[52] SUBEDI D P, JOSHI U M, WONG C S. Dielectric Barrier Discharge (DBD) Plasmas and Their Applications[M]. Plasma Science and Technology for Emerging Economies. 2017: 693-737.
[53] LIU Z M, CUI S, LUO Z, et al. Plasma arc welding: Process variants and its recent developments of sensing, controlling and modeling[J]. Journal of Manufacturing Processes, 2016, 23: 315-327.
[54] ZHANG Y, LI R L, ZHANG Y, et al. Indiscriminate revelation of dislocations in single crystal SiC by inductively coupled plasma etching[J]. Journal of the European Ceramic Society, 2019, 39(9): 2831-2838.
[55] UHM H S, HONG Y C, SHIN D H. A microwave plasma torch and its applications[J]. Plasma Sources Science and Technology, 2006, 15(2): S26-S34.
[56] ZAMRI A A, ONG M Y, NOMANBHAY S, et al. Microwave plasma technology for sustainable energy production and the electromagnetic interaction within the plasma system: A review[J]. Environmental Research, 2021, 197: 111204.
[57] ICHIKI T, TAURA R, HORIIKE Y. Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets[J]. Journal of Applied Physics, 2004, 95(1): 35-39.
[58] XIN Q, LI N, WANG J, et al. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma[J]. Applied Surface Science, 2015, 341: 142-148.
[59] ZHU W C, LI Q, ZHU X M, et al. Characteristics of atmospheric pressure plasma jets emerging into ambient air and helium[J]. Journal of Physics D: Applied Physics, 2009, 42(20): 202002.
[60] JUNG T Y, KIM D H, LIM H B. Molecular emission of CF4 gas in low-pressure inductively coupled plasma[J]. Bulletin of the Korean Chemical Society, 2006, 27(3): 373-375.
[61] WANG R, ZHANG C, LIU X, et al. Microsecond pulse driven Ar/CF4 plasma jet for polymethylmethacrylate surface modification at atmospheric pressure[J]. Applied Surface Science, 2015, 328: 509-515.
[62] ZIMMERMANN S, AHNER N, BLASCHTA F, et al. Analysis of the impact of different additives during etch processes of dense and porous low-k with OES and QMS[J]. Microelectronic Engineering, 2010, 87(3): 337-342.
[63] MORI Y, YAMAMURA K, SANO Y. Thinning of silicon-on-insulator wafers by numerically controlled plasma chemical vaporization machining[J]. Review of Scientific Instruments, 2004, 75(4): 942-946.
[64] BOLLINGER L D, STEINBERG G, ZAROWIN C B. Rapid optical figuring of aspherical surfaces with plasma-assisted chemical etching[C]. Large Optics II. International Society for Optics and Photonics, 1992, 1618: 14-21.
[65] NAVARRO R, BURGE J H, ARNOLD T, et al. Nonconventional ultra-precision manufacturing of ULE mirror surfaces using atmospheric reactive plasma jets[C]. Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. SPIE, 2016, 9912: 1143-1150.
[66] LUO Q, LU J, XU X, et al. Removal mechanism of sapphire substrates (0001, 112¯0 and 101¯0) in mechanical planarization machining[J]. Ceramics International, 2017, 43(18): 16178-16184.
[67] LAIDLER K J. The Development of the Arrhenius Equation[J]. Journal of Chemical Education, 1984, 61(6): 494.
[68] BOSSE H, SIDICK E, BODERMANN B, et al. Power spectral density specification and analysis of large optical surfaces[C]. Modeling Aspects in Optical Metrology II. 2009, 7390: 73900L..
[69] GONG Y, MISTURE S T, GAO P, et al. Surface Roughness Measurements Using Power Spectrum Density Analysis with Enhanced Spatial Correlation Length[J]. The Journal of Physical Chemistry C, 2016, 120(39): 22358-22364.
[70] MOGAB C J, ADAMS A C, FLAMM D L. Plasma etching of Si and SiO2—The effect of oxygen additions to CF4 plasmas[J]. Journal of Applied Physics, 1978, 49(7): 3796-3803.
[71] EXARHOS G J, KAMIMURA T, GUENTHER A H, et al. Enhancement of surface-damage resistance by removing subsurface damage in fused silica[C]. Laser-Induced Damage in Optical Materials: 2003. International Society for Optics and Photonics, 2004, 5273: 244-249.
[72] ZHENG Z, ZU X, JIANG X, et al. Effect of HF etching on the surface quality and laser-induced damage of fused silica[J]. Optics & Laser Technology, 2012, 44(4): 1039-1042.
[73] NEAUPORT J, AMBARD C, CORMONT P, et al. Subsurface damage measurement of ground fused silica parts by HF etching techniques[J]. Optics Express, 2009, 17(22): 20448-20456.
[74] WONG L, SURATWALA T, FEIT M D, et al. The effect of HF/NH4F etching on the morphology of surface fractures on fused silica[J]. Journal of Non-Crystalline Solids, 2009, 355(13): 797-810.
[75] PROTASOV C E, KHMYROV R S, GRIGORIEV S N, et al. Selective laser melting of fused silica: Interdependent heat transfer and powder consolidation[J]. International Journal of Heat and Mass Transfer, 2017, 104: 665-674.
修改评论