中文版 | English
题名

基于大气等离子体的熔石英无损超光滑表面创成机理与工艺探究

其他题名
MECHANISM AND PROCESS STUDY OF DAMAGE-FREE FINISHING OF FUSED SILICA VIA ATMOSPHERICAL PLASMA
姓名
姓名拼音
LI Rulin
学号
11930365
学位类型
硕士
学位专业
080903 微电子学与固体电子学
学科门类/专业学位类别
08 工学
导师
邓辉
导师单位
机械与能源工程系
论文答辩日期
2022-05-10
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

熔石英以其良好的化学和机械性能以及优异的光学特性在集成电路制造领域中发挥着至关重要的作用。然而,随着技术的不断发展,熔石英光学元件的损伤与表面精度要求也不断提高,传统的接触式加工工艺会不可避免的产生亚表面损伤,极大程度地影响了熔石英光学元件的性能及使用寿命,因此,熔石英光学元件的高效无损加工工艺是实现高性能光学元件制造亟需解决的问题。大气等离子体作为一种非接触式工艺因其高效无损的特点得到了越来越广泛的关注,本文将大气电感耦合等离子体引入到熔石英表面抛光工艺中,并对基于等离子体的熔石英的无损超光滑表面创成机理与工艺进行研究,具体的研究内容如下。

研究了基于等离子体化学刻蚀的熔石英的材料去除机理与损伤去除过程中的表面形貌演变规律,并提出了等离子体各向同性刻蚀抛光技术,展开了等离子体各向同性刻蚀抛光熔石英的机理与工艺探究,并且成功实现了表面粗糙度为17.4 nm的无损抛光表面。

研究了非减材模式下的等离子体对熔石英表面作用的影响,并提出了等离子体诱导原子迁移制造技术,展开了基于等离子体诱导原子迁移制造技术的熔石英无损超光滑表面创成机理与工艺探究,通过对工艺参数的优化将磨削加工表面抛光至表面粗糙度为0.15 nm的无损超光滑表面。

探究了等离子体诱导原子迁移制造技术的应用,验证了熔石英曲面抛光与熔石英表面损伤修复的可行性,揭示了等离子体诱导原子迁移制造技术对熔石英面形精度的影响。此外,分析了该技术当前存在的缺陷与的改进方案。

其他摘要

Fused silica plays a vital role in the integrated circuit manufacturing for its good chemical, mechanical, and optical properties. With the development of the technology, the requirements for surface accuracy and defect of fused silica optics are increasing as well. However, the traditional contacting processing technologies will inevitably introduce sub-surface damage, which greatly affects the performance and service life of fused silica components. Therefore, an efficient and non-destructive processing technology of fused silica is an urgent problem to be solved to realize the manufacturing of high-performance optical components. As a non-contact technology, atmospheric plasma has received much attention due to its high efficiency and non-destructive characteristics. In this paper, atmospheric inductively coupled plasma was introduced into the polishing process of fused silica and the principle of the plasma-based nondestructively ultra-smooth surface of fused silica was also studied. The main contents of this paper are as follows.

The material removal mechanism and surface morphology evolution of fused silica by plasma chemical etching were studied. Based on this, the plasma isotropic etching polishing technology was proposed and the mechanism and process of fused silica were investigated. Under the optimized condition, a damage-free surface with Sa roughness of 17.4 nm was successfully achieved.

This paper also studied the treatment of plasma on the fused silica surface in a non-subtractive mode and proposed the plasma-induced atom migration manufacturing (PAMM) technology. And the surface finishing mechanism and process of PAMM were studied. Through the optimized parameters, a damage-free surface with Sa surface roughness of 0.15 nm was obtained from a ground surface.

Finally, the application of PAMM in spherical surface polishing and surface damage recovery of fused silica was investigated and the influence of PAMM on surface shape accuracy was demonstrated. In addition, the current drawbacks and potential improvements of this technology were analyzed.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] DEKKER H, D'ODORICO S, KAUFER A, et al. Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory[C]. Optical and IR Telescope Instrumentation and Detectors. SPIE, 2000, 4008: 534-545.
[2] HASHIMOTO F, YAMAGUCHI H, KRAJNIK P, et al. Abrasive fine-finishing technology[J]. CIRP Annals, 2016, 65(2): 597-620.
[3] TONG W M, TAYLOR J S, HECTOR S D, et al. Mask substrate requirements and development for extreme ultraviolet lithography (EUVL)[C]. 19th Annual Symposium on Photomask Technology. SPIE, 1999, 3873: 421-428.
[4] PROGLER C, GREEN M, BONAM R K, et al. EUV mask challenges and requirements for ultimate single exposure interconnects[C]. Extreme Ultraviolet (EUV) Lithography X. SPIE, 2019, 10957: 122-135.
[5] KUMAR M, KUMAR A, ALOK A, et al. Magnetorheological method applied to optics polishing: A review[J]. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2020, 804(1): 012012.
[6] TURLEY C, RANKIN J, CHEN X, et al. EUV mask flatness compensation strategies and requirements for reticle flatness, scanner optimization and E-beam writer (Conference Presentation)[C]. SPIE, 2017, 10450: 104500A.
[7] KIM J S, AHN J. Mask materials and designs for extreme ultra violet lithography[J]. Electronic Materials Letters, 2018, 14(5): 533-547.
[8] TURLEY C, RANKIN J, CHEN X, et al. EUV mask flatness compensation strategies and requirements for reticle flatness, scanner optimization and E-beam writer (Conference Presentation)[C]. International Conference on Extreme Ultraviolet Lithography 2017. International Society for Optics and Photonics, 2017, 10450: 104500A.
[9] VLADIMIRSKY Y, TAYLOR J S, SOMMARGREN G E, et al. Fabrication and testing of optics for EUV projection lithography[C]. Emerging Lithographic Technologies II. SPIE, 1998, 3331: 580-590.
[10] RUBENCHIK A M, FRIT M D. Initiation, growth, and mitigation of UV-laser-induced damage in fused silica[C]. Laser-Induced Damage in Optical Materials: 2001. SPIE, 2002, 4679: 79-95.
[11] RAMAN R N, DEMOS S G, SHEN N, et al. Damage on fused silica optics caused by laser ablation of surface-bound microparticles[J]. Optics Express, 2016, 24(3): 2634-2647.
[12] BLOEMBERGEN N. Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics[J]. Applied optics, 1973, 12(4): 661-664.
[13] SURATWALA T I, MILLER P E, BUDE J D, et al. HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces[J]. Journal of the American Ceramic Society, 2011, 94(2): 416-428.
[14] LI Y, YUAN Z, WANG J, et al. Laser-induced damage characteristics in fused silica surface due to mechanical and chemical defects during manufacturing processes[J]. Optics & Laser Technology, 2017, 91: 149-158.
[15] LI Y, ZHENG N, LI H, et al. Morphology and distribution of subsurface damage in optical fused silica parts: Bound-abrasive grinding[J]. Applied Surface Science, 2011, 257(6): 2066-2073.
[16] BLAINEAU P, ANDRé D, LAHEURTE R, et al. Subsurface mechanical damage during bound abrasive grinding of fused silica glass[J]. Applied Surface Science, 2015, 353: 764-773.
[17] SURATWALA T, WONG L, MILLER P, et al. Sub-surface mechanical damage distributions during grinding of fused silica[J]. Journal of Non-Crystalline Solids, 2006, 352(52-54): 5601-5617.
[18] EVANS C J, PAUL E, DORNFELD D, et al. Material Removal Mechanisms in Lapping and Polishing[J]. CIRP Annals, 2003, 52(2): 611-633.
[19] LAUWERS B, KLOCKE F, KLINK A, et al. Hybrid processes in manufacturing[J]. CIRP Annals, 2014, 63(2): 561-583.
[20] ABIADE J T, CHOI W, SINGH R K. Effect of pH on ceria–silica interactions during chemical mechanical polishing[J]. Journal of Materials Research, 2005, 20(5): 1139-1145.
[21] LUO J, DORNFELD D A. Material removal mechanism in chemical mechanical polishing: theory and modeling[J]. IEEE transactions on semiconductor manufacturing, 2001, 14(2): 112-133.
[22] WANG L, ZHANG K, SONG Z, et al. Ceria concentration effect on chemical mechanical polishing of optical glass[J]. Applied Surface Science, 2007, 253(11): 4951-4954.
[23] WANG C, LIU Y, TIAN J, et al. Planarization properties of an alkaline slurry without an inhibitor on copper patterned wafer CMP[J]. Journal of Semiconductors, 2012, 33(11): 116001.
[24] ZHOU Y, PAN G, GONG H, et al. Characterization of sapphire chemical mechanical polishing performances using silica with different sizes and their removal mechanisms[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513: 153-159.
[25] SHI X L, CHEN G, XU L, et al. Achieving ultralow surface roughness and high material removal rate in fused silica via a novel acid SiO2 slurry and its chemical-mechanical polishing mechanism[J]. Applied Surface Science, 2020, 500: 144041.
[26] QIU Z, ZHOU L, FANG F, et al. Chemical mechanical grinding for quartz glass[J]. Optics and Precision Engineering, 2010, 18(7): 1554-1561.
[27] ZHOU L, SHIINA T, QIU Z, et al. Research on chemo-mechanical grinding of large size quartz glass substrate[J]. Precision Engineering, 2009, 33(4): 499-504.
[28] DONG Z, OU L, KANG R, et al. Photoelectrochemical mechanical polishing method for n-type gallium nitride[J]. CIRP Annals, 2019, 68(1): 205-208.
[29] TOH D, BUI P V, ISOHASHI A, et al. Catalyzed chemical polishing of SiO2 glasses in pure water[J]. Review of Scientific Instruments, 2019, 90(4): 045115.
[30] DENG H, YAMAMURA K. Atomic-scale flattening mechanism of 4H-SiC (0 0 0 1) in plasma assisted polishing[J]. CIRP Annals, 2013, 62(1): 575-578.
[31] CHKHALO N I, CHURIN S A, PESTOV A E, et al. Roughness measurement and ion-beam polishing of super-smooth optical surfaces of fused quartz and optical ceramics[J]. Optics Express, 2014, 22(17): 20094-20106.
[32] CHKALO N I, CHURIN S A, MIKHAYLENKO M S, et al. Ion-beam polishing of fused silica substrates for imaging soft x-ray and extreme ultraviolet optics[J]. Applied Optics, 2016, 55(6): 1249-1256.
[33] BORDATCHEV E V, HAHIZ A M K, TUTUNEA-FATAN O R. Performance of laser polishing in finishing of metallic surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(1): 35-52.
[34] ROSA B, MONGNOL P, HASCOëT J Y. Laser polishing of additive laser manufacturing surfaces[J]. Journal of Laser Applications, 2015, 27(S2): S29102.
[35] PFEFFERKORN F E, DUFFIE N A, MORROW J D, et al. Effect of beam diameter on pulsed laser polishing of S7 tool steel[J]. CIRP Annals, 2014, 63(1): 237-240.
[36] WANG Q, MORROW J D, MA C, et al. Surface prediction model for thermocapillary regime pulsed laser micro polishing of metals[J]. Journal of Manufacturing Processes, 2015, 20: 340-348.
[37] MARIMUTHU S, TRIANTAPHYLLOU A, ANTAR M, et al. Laser polishing of selective laser melted components[J]. International Journal of Machine Tools and Manufacture, 2015, 95: 97-104.
[38] BORDATCHEV E V, HAFIZ A M K, TUTUNEA-FATAN O R. Performance of laser polishing in finishing of metallic surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(1): 35-52.
[39] UKAR E, LAMIKIZ A, LóPEZ D L L N, et al. Laser polishing of tool steel with CO2 laser and high-power diode laser[J]. International Journal of Machine Tools and Manufacture, 2010, 50(1): 115-125.
[40] TEMMLER A, WILLENBORG E, WISSENBAH K. Laser polishing[C]. Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII. SPIE, 2012, 8243: 171-183.
[41] PIECHULLA P, BAUER J, BOEHM G, et al. Etch Mechanism and Temperature Regimes of an Atmospheric Pressure Chlorine-Based Plasma Jet Process[J]. Plasma Processes and Polymers, 2016, 13(11): 1128-1135.
[42] ARNOLD T, BöHM G, PAETZELT H. Ultra-Precision Surface Machining with Reactive Plasma Jets[J]. Contributions to Plasma Physics, 2014, 54(2): 145-154.
[43] TAKINO H, SHIBATA N, ITOH H, et al. Fabrication of optics by use of plasma chemical vaporization machining with a pipe electrode[J]. Applied Optics, 2002, 41(19): 3971-3977.
[44] MORI Y, YAMAUCHI K, YAMAMURA K, et al. Development of plasma chemical vaporization machining[J]. Review of Scientific Instruments, 2000, 71(12): 4627-4632.
[45] YAMAMURA K, TAKEDA Y, SAKAIYA S, et al. High-spatial Resolution Figuring by Pulse Width Modulation Controlled Plasma Chemical Vaporization Machining[J]. Procedia CIRP, 2016, 42: 508-511.
[46] TAKINO H, YAMAMURA K, SANO Y, et al. Shape correction of optical surfaces using plasma chemical vaporization machining with a hemispherical tip electrode[J]. Appl Optics, 2012, 51(3): 401-407.
[47] ATAD-ETTEDGUI E, VERMA Y, ANTEBI J, et al. Rapid damage-free shaping of silicon carbide using reactive atom plasma (RAP) processing[C]. Optomechanical Technologies for Astronomy. SPIE, 2006, 6273: 91-98.
[48] CASTELLI M, JOURDAIN R, MORANTZ P, et al. Rapid optical surface figuring using reactive atom plasma[J]. Precision Engineering, 2012, 36(3): 467-476.
[49] JOURDAIN R, CASTELLI M, SHORE P, et al. Reactive atom plasma (RAP) figuring machine for meter class optical surfaces[J]. Production Engineering, 2013, 7(6): 665-673.
[50] CASTELLI M, JOURDAIN R, MORANTZ P, et al. Reactive Atom Plasma for Rapid Figure Correction of Optical Surfaces[J]. Key Engineering Materials, 2012, 496: 182-187.
[51] 辛强.大气感应耦合等离子体射流特性与加工表面演变机理研究[D].哈尔滨工业大学, 2017.
[52] SUBEDI D P, JOSHI U M, WONG C S. Dielectric Barrier Discharge (DBD) Plasmas and Their Applications[M]. Plasma Science and Technology for Emerging Economies. 2017: 693-737.
[53] LIU Z M, CUI S, LUO Z, et al. Plasma arc welding: Process variants and its recent developments of sensing, controlling and modeling[J]. Journal of Manufacturing Processes, 2016, 23: 315-327.
[54] ZHANG Y, LI R L, ZHANG Y, et al. Indiscriminate revelation of dislocations in single crystal SiC by inductively coupled plasma etching[J]. Journal of the European Ceramic Society, 2019, 39(9): 2831-2838.
[55] UHM H S, HONG Y C, SHIN D H. A microwave plasma torch and its applications[J]. Plasma Sources Science and Technology, 2006, 15(2): S26-S34.
[56] ZAMRI A A, ONG M Y, NOMANBHAY S, et al. Microwave plasma technology for sustainable energy production and the electromagnetic interaction within the plasma system: A review[J]. Environmental Research, 2021, 197: 111204.
[57] ICHIKI T, TAURA R, HORIIKE Y. Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets[J]. Journal of Applied Physics, 2004, 95(1): 35-39.
[58] XIN Q, LI N, WANG J, et al. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma[J]. Applied Surface Science, 2015, 341: 142-148.
[59] ZHU W C, LI Q, ZHU X M, et al. Characteristics of atmospheric pressure plasma jets emerging into ambient air and helium[J]. Journal of Physics D: Applied Physics, 2009, 42(20): 202002.
[60] JUNG T Y, KIM D H, LIM H B. Molecular emission of CF4 gas in low-pressure inductively coupled plasma[J]. Bulletin of the Korean Chemical Society, 2006, 27(3): 373-375.
[61] WANG R, ZHANG C, LIU X, et al. Microsecond pulse driven Ar/CF4 plasma jet for polymethylmethacrylate surface modification at atmospheric pressure[J]. Applied Surface Science, 2015, 328: 509-515.
[62] ZIMMERMANN S, AHNER N, BLASCHTA F, et al. Analysis of the impact of different additives during etch processes of dense and porous low-k with OES and QMS[J]. Microelectronic Engineering, 2010, 87(3): 337-342.
[63] MORI Y, YAMAMURA K, SANO Y. Thinning of silicon-on-insulator wafers by numerically controlled plasma chemical vaporization machining[J]. Review of Scientific Instruments, 2004, 75(4): 942-946.
[64] BOLLINGER L D, STEINBERG G, ZAROWIN C B. Rapid optical figuring of aspherical surfaces with plasma-assisted chemical etching[C]. Large Optics II. International Society for Optics and Photonics, 1992, 1618: 14-21.
[65] NAVARRO R, BURGE J H, ARNOLD T, et al. Nonconventional ultra-precision manufacturing of ULE mirror surfaces using atmospheric reactive plasma jets[C]. Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II. SPIE, 2016, 9912: 1143-1150.
[66] LUO Q, LU J, XU X, et al. Removal mechanism of sapphire substrates (0001, 112¯0 and 101¯0) in mechanical planarization machining[J]. Ceramics International, 2017, 43(18): 16178-16184.
[67] LAIDLER K J. The Development of the Arrhenius Equation[J]. Journal of Chemical Education, 1984, 61(6): 494.
[68] BOSSE H, SIDICK E, BODERMANN B, et al. Power spectral density specification and analysis of large optical surfaces[C]. Modeling Aspects in Optical Metrology II. 2009, 7390: 73900L..
[69] GONG Y, MISTURE S T, GAO P, et al. Surface Roughness Measurements Using Power Spectrum Density Analysis with Enhanced Spatial Correlation Length[J]. The Journal of Physical Chemistry C, 2016, 120(39): 22358-22364.
[70] MOGAB C J, ADAMS A C, FLAMM D L. Plasma etching of Si and SiO2—The effect of oxygen additions to CF4 plasmas[J]. Journal of Applied Physics, 1978, 49(7): 3796-3803.
[71] EXARHOS G J, KAMIMURA T, GUENTHER A H, et al. Enhancement of surface-damage resistance by removing subsurface damage in fused silica[C]. Laser-Induced Damage in Optical Materials: 2003. International Society for Optics and Photonics, 2004, 5273: 244-249.
[72] ZHENG Z, ZU X, JIANG X, et al. Effect of HF etching on the surface quality and laser-induced damage of fused silica[J]. Optics & Laser Technology, 2012, 44(4): 1039-1042.
[73] NEAUPORT J, AMBARD C, CORMONT P, et al. Subsurface damage measurement of ground fused silica parts by HF etching techniques[J]. Optics Express, 2009, 17(22): 20448-20456.
[74] WONG L, SURATWALA T, FEIT M D, et al. The effect of HF/NH4F etching on the morphology of surface fractures on fused silica[J]. Journal of Non-Crystalline Solids, 2009, 355(13): 797-810.
[75] PROTASOV C E, KHMYROV R S, GRIGORIEV S N, et al. Selective laser melting of fused silica: Interdependent heat transfer and powder consolidation[J]. International Journal of Heat and Mass Transfer, 2017, 104: 665-674.

所在学位评定分委会
电子与电气工程系
国内图书分类号
TH16
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335957
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
李如林. 基于大气等离子体的熔石英无损超光滑表面创成机理与工艺探究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930365-李如林-机械与能源工程(6065KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李如林]的文章
百度学术
百度学术中相似的文章
[李如林]的文章
必应学术
必应学术中相似的文章
[李如林]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。