中文版 | English
题名

可压缩稠密气体各向同性湍流的数值模拟研究

其他题名
NUMERICAL SIMULATION OF COMPRESSIBLEISOTROPIC TURBULENCE OF DENSE GAS
姓名
姓名拼音
DUAN Lishu
学号
11930597
学位类型
硕士
学位专业
080103 流体力学
学科门类/专业学位类别
08 工学
导师
王建春
导师单位
力学与航空航天工程系
论文答辩日期
2022-05-12
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       稠密气体是一种特殊的非理想气体,具有很高的实际应用价值。可压缩各向同性湍流是一种基本的湍流形式,被许多学者们深入研究且相关成果对推动湍流发展有很大的意义。由于稠密气体的特殊热力学性质,在可压缩稠密气体各向同性湍流中出现了许多新的现象,流场性质也与理想气体湍流有较大不同。因此对 可压缩稠密气体各向同性湍流的研究既具有实际意义也有很高的学术价值。本文采用高精度直接数值模拟的方法对可压缩稠密气体各向同性湍流场进行求解。相应湍流场的湍流马赫数为 1.0,泰勒雷诺数为 153.0,流场具有强可压缩的特性。本文采用了一种混合格式来离散控制方程,流场中的激波区域采用七阶 WENO 格式 处理,而光滑区域则采用八阶紧致中心差分格式来处理。同时,气体的热力学性 质采用 Martin­Hou 状态方程来描述。

       本文主要的研究内容包括流场的小尺度结构统计性质以及局部拓扑结构的特征。流场的初始热力学状态位于逆温带中,这个区域的气体动力学基本导数为负值。湍流场在初始条件下开始演化,当达到稳定状态后,流场中存在三种不同的气体区域:Bethe–Zel’dovich–Thompson(BZT)区域,classical dense gas(CDG)区域,以及 usual gas(UG)区域。不同气体区域的流场性质有所不同,在本文中我们通过比较三个气体区域的流动特征来分析稠密气体效应的影响。

       在本文中研究了不同气体区域中的拟涡能生成项的统计特性。基于亥姆霍兹 分解,可以发现不同气体区域中的拟涡能生成项主要来自于它的剪切分量。同时,稠密气体效应会削弱压缩区域中的拟涡能生成并减小膨胀区域的拟涡能损失。另 一方面,将拟涡能生成项在速度梯度张量的三个特征方向上分解后发现,第一特征方向的分量造成拟涡能损失而第三特征方向的分量贡献拟涡能生成。稠密气体效应则会降低所有分量的幅值。进一步地,本文基于速度梯度张量的三个不变量,分析了不同气体区域中局部拓扑结构的特征。在膨胀区域,稠密气体效应会显著减少膨胀的涡结构并削弱这部分结构对拟涡能损失的贡献。

其他摘要

   Dense gas is a special real gas, which has high practical application value. Compressible isotropic turbulence is a basic form of turbulence, which has been deeply studied by many scholars, and the relevant results are of great significance to promote the development of turbulence. Due to the special thermodynamic properties of dense gas, many new phenomena have appeared in the compressible isotropic turbulence of dense gas, and the flow field properties are quite different from those of ideal gas turbulence. Therefore, the study of compressible isotropic turbulence of dense gas has both practical significance and high academic value. In this paper, the compressible isotropic turbulence of dense gas is solved by high-precision direct numerical simulation. The turbulent Mach number in the flow field is 1.0, and the Taylor Reynolds number is 153.0. The flow field has strong compressibility. Moreover, a hybrid scheme is used to discretize the governing equations. The shock region in the flow field is treated by the seventh-order WENO scheme, while the smooth region is treated by the eighth-order compact central difference scheme. At the same time, the thermodynamic properties of the gas are described by Martin-Hou equation of state.

  The main research contents of this study include the statistical properties of small-scale structure and the characteristics of local topology. The initial thermodynamic state of the flow field is located in the inversion zone, where the fundamental derivative of gas dynamics is negative. When the flow field reaches a stationary state, it contains three distinct gas regions: the Bethe-Zel'dovich-Thompson (BZT) region, the classical dense gas (CDG) region, and the usual gas (UG) region. The flow field properties of different gas regions are different. In this paper, we analyze the influence of dense gas effect by comparing the flow characteristics of three gas regions.

  The effects of different gas regions on the statistical properties of the enstrophy production term are investigated in this study. Based on Helmholtz decomposition, it is discovered that the solenoidal component is primarily responsible for enstrophy production. The dense gas effect reduces enstrophy production in the compression region and weakens enstrophy loss in the expansion region. Decomposing the enstrophy generation term in the three characteristic directions of the velocity gradient tensor, on the other hand, reveals that the component in the first characteristic direction causes enstrophy loss, while the component in the third characteristic direction contributes to enstrophy generation. The amplitude of all components will be reduced due to the dense gas effect. Furthermore, the flow topology properties based on the three invariants of the velocity gradient tensor are investigated. The dense gas effect significantly reduces the expansive vortex structure in the expansion region, weakening its contribution to enstrophy loss.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] SCIACOVELLI L, CINNELLA P, GRASSO F. Small­-scale dynamics of dense gas compressible homogeneous isotropic turbulence[J/OL]. Journal of Fluid Mechanics, 2017, 825: 515­-549. DOI: 10.1017/jfm.2017.415.
[2] BROWN B P, ARGROW B M. Application of Bethe-Zel’dovich-Thompson fluids in organic Rankine cycle engines[J]. Journal of Propulsion and Power, 2000, 16(6): 1118-1124.
[3] ANDERSON W K. Numerical study on using sulfur hexafluoride as a wind tunnel test gas[J]. AIAA journal, 1991, 29(12): 2179-2180.
[4] ANGELINO G, DI PALIANO P C. Multicomponent working fluids for organic Rankine cycles (ORCs)[J]. Energy, 1998, 23(6): 449-463.
[5] WAGNER B, SCHMIDT W. Theoretical investigations of real gas effects in cryogenic wind tunnels[J]. AIAA Journal, 1978, 16(6): 580-586.
[6] ANDERS J, ANDERSON W, MURTHY A. Transonic similarity theory applied to a supercritical airfoil in heavy gas[J]. Journal of aircraft, 1999, 36(6): 957-964.
[7] KORTE J. Inviscid design of hypersonic wind tunnel nozzles for a real gas[C]//38th Aerospace Sciences Meeting and Exhibit. 2000: 677.
[8] BODENSCHATZ E, BEWLEY G P, NOBACH H, et al. Variable density turbulence tunnel facility[J]. Review of Scientific Instruments, 2014, 85(9): 093908.
[9] WALTERS D K, COKLJAT D. A three-equation eddy-viscosity model for Reynolds-averaged Navier–Stokes simulations of transitional flow[J]. Journal of fluids engineering, 2008, 130(12).
[10] SMAGORINSKY J. General circulation experiments with the primitive equations: I. The basic experiment[J]. Monthly weather review, 1963, 91(3): 99-164.
[11] SAMTANEY R, PULLIN D I, KOSOVIĆ B. Direct numerical simulation of decaying com-pressible turbulence and shocklet statistics[J]. Physics of Fluids, 2001, 13(5): 1415-1430.
[12] WANG J, SHI Y, WANG L P, et al. Effect of compressibility on the small-scale structures in isotropic turbulence[J]. Journal of Fluid Mechanics, 2012, 713: 588-631.
[13] FERZIGER J H. Simultaion of Incompressible Turbulent Flows[J]. Journal of Computational Physics, 1987, 69(1): 1-48.
[14] WANG X, WANG J, LI H, et al. Kinetic energy transfer in compressible homogeneous anisotropic turbulence[J]. Physical Review Fluids, 2021, 6(6): 064601.
[15] DONZIS D A, JAGANNATHAN S. Fluctuations of thermodynamic variables in stationary compressible turbulence[J]. Journal of Fluid Mechanics, 2013, 733: 221-244.
[16] JABERI F, LIVESCU D, MADNIA C. Characteristics of chemically reacting compressible homogeneous turbulence[J]. Physics of Fluids, 2000, 12(5): 1189-1209.
[17] VAN DRIEST E R. Turbulent boundary layer in compressible fluids[J]. Journal of the Aeronautical Sciences, 1951, 18(3): 145-160.
[18] TAYLOR G I. Statistical theory of turbulence II[J]. Proceedings of the Royal Society of London. Series A Mathematical and Physical Sciences, 1935, 151(873): 444-454.
[19] RICHARDSON L F. Weather prediction by numerical process[M]. Cambridge university press, 2007.
[20] KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Cr Acad. Sci. URSS, 1941, 30: 301-305.
[21] KOLMOGOROV A N. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number[J]. Journal of Fluid Mechanics, 1962, 13(1): 82-85.
[22] WANG J, WANG L P, XIAO Z, et al. A hybrid numerical simulation of isotropic compressible turbulence[J]. Journal of Computational Physics, 2010, 229(13): 5257-5279.
[23] BURGERS J M. A mathematical model illustrating the theory of turbulence[M]//Advances in applied mechanics: volume 1. Elsevier, 1948: 171-199.
[24] HOPF E. The partial differential equation [J]. Communications on Pure and Applied Mathematics, 1950.
[25] MEECHAM W C, SIEGEL A. Wiener-Hermite expansion in model turbulence at large Reynolds numbers[J]. The Physics of Fluids, 1964, 7(8): 1178-1190.
[26] CHEKHLOV A, YAKHOT V. Kolmogorov turbulence in a random¬force¬driven Burgers equation: anomalous scaling and probability density functions[J]. Physical Review E, 1995, 52(5): 5681.
[27] YAKHOT V, CHEKHLOV A. Algebraic tails of probability density functions in the random force driven Burgers turbulence[J]. Physical review letters, 1996, 77(15): 3118.
[28] GOTOH T, KRAICHNAN R H. Steady-state Burgers turbulence with large-scale forcing[J]. Physics of Fluids, 1998, 10(11): 2859-2866.
[29] WEINAN E, EIJNDEN E V. Asymptotic theory for the probability density functions in Burgers turbulence[J]. Physical review letters, 1999, 83(13): 2572.
[30] EIJNDEN E V, et al. Statistical theory for the stochastic Burgers equation in the inviscid limit [A]. 1999.
[31] BEC J. Universality of velocity gradients in forced Burgers turbulence[J]. Physical Review Letters, 2001, 87(10): 104501.
[32] KOVASZNAY L S. Turbulence in supersonic flow[J]. Journal of the Aeronautical Sciences, 1953, 20(10): 657-674.
[33] MOYAL J E. The spectra of turbulence in a compressible fluid; eddy turbulence and random noise[C]//Mathematical Proceedings of the Cambridge Philosophical Society: volume 48. Cambridge University Press, 1952: 329-344.
[34] TANI I. History of boundary layer theory[J]. Annual review of fluid mechanics, 1977, 9(1): 87-111.
[35] CHU B T, KOVÁSZNAY L S. Non-linear interactions in a viscous heat conducting compressible gas[J]. Journal of Fluid Mechanics, 1958, 3(5): 494-514.
[36] PASSOT T, POUQUET A. Numerical simulation of compressible homogeneous flows in the turbulent regime[J]. Journal of Fluid Mechanics, 1987, 181: 441-466.
[37] ERLEBACHER G, HUSSAINI M, KREISS H, et al. The analysis and simulation of compressible turbulence[J]. Theoretical and Computational Fluid Dynamics, 1990, 2(2): 73-95.
[38] RIBNER H S. Shock-turbulence interaction and the generation of noise: volume 1233[M]. National Advisory Committee for Aeronautics, 1954.
[39] LEE S, LELE S K, MOIN P. Direct numerical simulation of isotropic turbulence interacting with a weak shock wave[J]. Journal of Fluid Mechanics, 1993, 251: 533-562.
[40] LEE S, LELE S K, MOIN P. Interaction of isotropic turbulence with shock waves: effect of shock strength[J]. Journal of Fluid Mechanics, 1997, 340: 225-247.
[41] KIDA S, ORSZAG S A. Energy and spectral dynamics in forced compressible turbulence[J]. Journal of Scientific Computing, 1990, 5(2): 85-125.
[42] LARSSON J, LELE S K. Direct numerical simulation of canonical shock/turbulence interaction [J]. Physics of fluids, 2009, 21(12): 126101.
[43] DONZIS D A. Amplification factors in shock¬turbulence interactions: effect of shock thickness [J]. Physics of Fluids, 2012, 24(1): 011705.
[44] DONZIS D A. Shock structure in shock-turbulence interactions[J]. Physics of Fluids, 2012, 24 (12): 126101.
[45] WANG J, SHI Y, WANG L P, et al. Effect of shocklets on the velocity gradients in highly compressible isotropic turbulence[J]. Physics of Fluids, 2011, 23(12): 125103.
[46] WANG J, YANG Y, SHI Y, et al. Cascade of kinetic energy in three-dimensional compressible turbulence[J]. Physical review letters, 2013, 110(21): 214505.
[47] WANG J, WAN M, CHEN S, et al. Kinetic energy transfer in compressible isotropic turbulence [J]. Journal of Fluid Mechanics, 2018, 841: 581-613.
[48] WANG J, GOTOH T, WATANABE T. Spectra and statistics in compressible isotropic turbu- lence[J]. Physical Review Fluids, 2017, 2(1): 013403.
[49] WANG J, GOTOH T, WATANABE T. Scaling and intermittency in compressible isotropic turbulence[J]. Physical Review Fluids, 2017, 2(5): 053401.
[50] WANG J, WAN M, CHEN S, et al. Cascades of temperature and entropy fluctuations in compressible turbulence[J]. Journal of Fluid Mechanics, 2019, 867: 195-215.
[51] MEYER T. Ueber zweidimensionale Bewegungs vorgaenge in einem Gas, das mit ueberschallgeschwindigkeit stroemt.[J]. Dissertation Goettingen, 1908.
[52] RAYLEIGH L. Aerial plane waves of finite amplitude[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1910, 84(570): 247-284.
[53] ZEMPLEN G. On the possibility of negative shock waves in gas[J]. Comptes Rendus de l’ Académie des Sciences, 1905, 141: 710.
[54] HAYES W. Fundamentals of gas dynamics[M]. Princeton University Press„ 1958.
[55] BETHE H A. On the theory of shock waves for an arbitrary equation of state[M]//Classic papers in shock compression science. Springer, 1942: 421-495.
[56] KLEIN M J. The historical origins of the van der Waals equation[J]. Physica, 1974, 73(1): 28-47.
[57] REDLICH O, KWONG J, et al. An equation of state. Fugacities of gaseous solutions[J]. Chem. Rev., 1949, 44(1): 233-244.
[58] MARTIN J J, HOU Y C. Development of an equation of state for gases[J]. Aiche Journal, 1955, 1: 142-151.
[59] GUARDONE A. Nonclassical gasdynamics: thermodynamic modeling and numerical simulation of multidimensional flows of BZT fluids[D]. Politecnico di Milano Milan, Italy, 2001.
[60] ZELDOVICH J. On the possibility of rarefaction shock waves[J]. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1946, 16(4): 363-364.
[61] THOMPSON P A. A fundamental derivative in gasdynamics[J]. The Physics of Fluids, 1971, 14(9): 1843-1849.
[62] LAMBRAKIS K C, THOMPSON P A. Existence of real fluids with a negative fundamental derivative 𝛤[J]. The Physics of Fluids, 1972, 15(5): 933-935.
[63] THOMPSON P A, LAMBRAKIS K. Negative shock waves[J]. Journal of Fluid Mechanics, 1973, 60(1): 187-208.
[64] CRAMER M. Negative nonlinearity in selected fluorocarbons[J]. Physics of Fluids A: Fluid Dynamics, 1989, 1(11): 1894-1897.
[65] CRAMER M, KLUWICK A. On the propagation of waves exhibiting both positive and negative nonlinearity[J]. Journal of Fluid Mechanics, 1984, 142: 9-37.
[66] CRAMER M, TARKENTON G. Transonic flows of Bethe—Zel’dovich—Thompson fluids[J]. Journal of Fluid Mechanics, 1992, 240: 197-228.
[67] RUSAK Z, WANG C W. Transonic flow of dense gases around an airfoil with a parabolic nose [J]. Journal of Fluid Mechanics, 1997, 346: 1-21.
[68] BROWN B P, ARGROW B M. Nonclassical dense gas flows for simple geometries[J]. AIAA journal, 1998, 36(10): 1842-1847.
[69] CINNELLA P, CONGEDO P, LAFORGIA D. Investigation of BZT transonic flows past an airfoil using a 5th power virial equation of state[C]//Proceedings of the 4th European Congress on Computational Methods in Applied Sciences and Engineering. 2004.
[70] CONGEDO P M, CINNELLA P, CORRE C E. Shape optimization for dense gas flows through turbine cascades[C]//4th International Conference on Computational Fluid Dynamics (ICCFD 4). 2006.
[71] CINNELLA P. Viscous performance of transonic dense gas flows[C]//35th AIAA Fluid Dynamics Conference and Exhibit. 2005: 5284.
[72] CONGEDO P M, CINNELLA P. Aerodynamic performance of transonic BZT flows past an airfoil[J]. AIAA Journal, 2005.
[73] CINNELLA P, CONGEDO P M. Aerodynamic Performance of Transonic Bethe-Zal’dovich-Thompson Flows past an Airfoil[J]. AIAA journal, 2005, 43(2): 370-378.
[74] CINNELLA P, CONGEDO P. Optimal Airfoil Shapes in Viscous Transonic Flows of Dense Gases[C]//36th AIAA Fluid Dynamics Conference and Exhibit. 2006: 3881.
[75] CONGEDO P M, CINNELLA P. Inviscid and viscous behavior of dense gas flows past an airfoil[J]. Journal of Fluid Mechanics, 2007.
[76] CINNELLA P, CONGEDO P M. Inviscid and viscous aerodynamics of dense gases[J]. Journal of Fluid Mechanics, 2007, 580: 179-217.
[77] CINNELLA P, CONGEDO P. Optimal airfoil shapes for viscous transonic flows of Bethe–Zel’ dovich–Thompson fluids[J]. Computers & Fluids, 2008, 37(3): 250-264.
[78] ZAMFIRESCU C, DINCER I. Performance investigation of high-temperature heat pumps with various BZT working fluids[J]. Thermochimica Acta, 2009, 488(1-2): 66-77.
[79] CONGEDO P M, CORRE C, CINNELLA P. Numerical investigation of dense gas effects in turbomachinery[J]. Computers & Fluids, 2011, 49(1): 290-301.
[80] ARGROW B. Computational analysis of dense gas shock tube flow[J]. Shock Waves, 1996, 6 (4): 241-248.
[81] BROWN B, ARGROW B. Two-dimensional shock tube flow for dense gases[J]. Journal of Fluid Mechanics, 1997, 349: 95-115.
[82] FERGASON S, GUARDONE A, ARGROW B. Construction and validation of a dense gas shock tube[J]. Journal of thermophysics and heat transfer, 2003, 17(3): 326-333.
[83] GUARDONE A. Three-dimensional shock tube flows for dense gases[J]. Journal of Fluid Mechanics, 2007, 583: 423-442.
[84] SCIACOVELLI L, CINNELLA P, CONTENT C, et al. Dense gas effects in inviscid homogeneous isotropic turbulence[J]. Journal of Fluid Mechanics, 2016, 800: 140179.
[85] GIAUQUE A, CORRE C, VADROT A. Direct numerical simulations of forced homogeneous isotropic turbulence in a dense gas[J]. Journal of Turbulence, 2020, 21(3): 186208.
[86] SCIACOVELLI L, CINNELLA P, GLOERFELT X. Direct numerical simulations of supersonic turbulent channel flows of dense gases[J]. Journal of Fluid Mechanics, 2017, 821: 153-199.
[87] SCIACOVELLI L, GLOERFELT X, PASSIATORE D, et al. Numerical investigation of high-speed turbulent boundary layers of dense gases[J]. Flow, Turbulence and Combustion, 2020, 105(2): 555-579.
[88] GLOERFELT X, ROBINET J C, SCIACOVELLI L, et al. Dense-gas effects on compressible boundary-layer stability[J]. Journal of Fluid Mechanics, 2020, 893.
[89] VADROT A, GIAUQUE A, CORRE C. Analysis of turbulence characteristics in a temporal dense gas compressible mixing layer using direct numerical simulation[J]. Journal of Fluid Mechanics, 2020, 893.
[90] CHEN S, DOOLEN G D, KRAICHNAN R H, et al. On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(2): 458-463.
[91] PASSOT T, VAZQUEZ-SEMADENI E, POUQUET A. A turbulent model for the interstellar medium. II. Magnetic fields and rotation[A]. 1996.
[92] SUTHERLAND W. LII. The viscosity of gases and molecular force[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1893, 36(223): 507¬531.
[93] CHUNG T H, AJLAN M, LEE L L, et al. Generalized multiparameter correlation for nonpolar and polar fluid transport properties[J]. Industrial & engineering chemistry research, 1988, 27 (4): 671-679.
[94] HUSSAINI M Y, ZANG T A. Spectral methods in fluid dynamics[J]. Annual review of fluid mechanics, 1987, 19(1): 339-367.
[95] LELE S K. Compact finite difference schemes with spectral¬like resolution[J]. Journal of computational physics, 1992, 103(1): 16-42.
[96] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III[M]//Upwind and high-resolution schemes. Springer, 1987: 218-290.
[97] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of computational physics, 1994, 115(1): 200-212.
[98] YEE H, WARMING R, HARTEN A. Implicit total variation diminishing (TVD) schemes for steady-state calculations[J]. Journal of Computational Physics, 1985, 57(3): 327-360.
[99] ADAMS N A, SHARIFF K. A high¬resolution hybrid compact-ENO scheme for shock-turbulence interaction problems[J]. Journal of Computational Physics, 1996, 127(1): 27-51.
[100] PIROZZOLI S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction [J]. Journal of Computational Physics, 2002, 178(1): 81-117.
[101] REN Y X, ZHANG H, et al. A characteristic¬wise hybrid compact¬WENO scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics, 2003, 192(2): 365¬386.
[102] BALSARA D S, SHU C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405¬452.
[103] GOTTLIEB S, SHU C W. Total variation diminishing Runge-Kutta schemes[J]. Mathematics of computation, 1998, 67(221): 73-85.
[104] STEGER J L, WARMING R. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods[J]. Journal of computational physics, 1981, 40(2): 263-293.
[105] LEER B V. Flux-vector splitting for the Euler equation[M]//Upwind and high-resolution schemes. Springer, 1997: 80-89.
[106] ROE P L. Characteristic-based schemes for the Euler equations[J]. Annual review of fluid mechanics, 1986, 18(1): 337-365.
[107] GROSSMAN B, WALTERS R. Analysis of flux-split algorithms for Euler’s equations with real gases[J]. AIAA journal, 1989, 27(5): 524-531.
[108] ZHENG Q, WANG J, NOACK B R, et al. Vibrational relaxation in compressible isotropic turbulence with thermal nonequilibrium[J]. Physical Review Fluids, 2020, 5(4): 044602.
[109] BUARIA D, BODENSCHATZ E, PUMIR A. Vortex stretching and enstrophy production in high Reynolds number turbulence[J]. Physical Review Fluids, 2020, 5(10): 104602.
[110] ASHURST W T, KERSTEIN A, KERR R, et al. Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence[J]. The Physics of fluids, 1987, 30(8): 2343-2353.
[111] CHONG M S, PERRY A E, CANTWELL B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(5): 765-777.
[112] PERRY A E, CHONG M S. A description of eddying motions and flow patterns using critical-point concepts[J]. Annual Review of Fluid Mechanics, 1987, 19(1): 125-155.
[113] PIROZZOLI S, GRASSO F. Direct numerical simulations of isotropic compressible turbulence: influence of compressibility on dynamics and structures[J]. Physics of Fluids, 2004, 16(12): 4386-4407.

所在学位评定分委会
力学与航空航天工程系
国内图书分类号
O357.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335959
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
段礼沭. 可压缩稠密气体各向同性湍流的数值模拟研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930597-段礼沭-力学与航空航天(9659KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[段礼沭]的文章
百度学术
百度学术中相似的文章
[段礼沭]的文章
必应学术
必应学术中相似的文章
[段礼沭]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。