[1] SCIACOVELLI L, CINNELLA P, GRASSO F. Small-scale dynamics of dense gas compressible homogeneous isotropic turbulence[J/OL]. Journal of Fluid Mechanics, 2017, 825: 515-549. DOI: 10.1017/jfm.2017.415.
[2] BROWN B P, ARGROW B M. Application of Bethe-Zel’dovich-Thompson fluids in organic Rankine cycle engines[J]. Journal of Propulsion and Power, 2000, 16(6): 1118-1124.
[3] ANDERSON W K. Numerical study on using sulfur hexafluoride as a wind tunnel test gas[J]. AIAA journal, 1991, 29(12): 2179-2180.
[4] ANGELINO G, DI PALIANO P C. Multicomponent working fluids for organic Rankine cycles (ORCs)[J]. Energy, 1998, 23(6): 449-463.
[5] WAGNER B, SCHMIDT W. Theoretical investigations of real gas effects in cryogenic wind tunnels[J]. AIAA Journal, 1978, 16(6): 580-586.
[6] ANDERS J, ANDERSON W, MURTHY A. Transonic similarity theory applied to a supercritical airfoil in heavy gas[J]. Journal of aircraft, 1999, 36(6): 957-964.
[7] KORTE J. Inviscid design of hypersonic wind tunnel nozzles for a real gas[C]//38th Aerospace Sciences Meeting and Exhibit. 2000: 677.
[8] BODENSCHATZ E, BEWLEY G P, NOBACH H, et al. Variable density turbulence tunnel facility[J]. Review of Scientific Instruments, 2014, 85(9): 093908.
[9] WALTERS D K, COKLJAT D. A three-equation eddy-viscosity model for Reynolds-averaged Navier–Stokes simulations of transitional flow[J]. Journal of fluids engineering, 2008, 130(12).
[10] SMAGORINSKY J. General circulation experiments with the primitive equations: I. The basic experiment[J]. Monthly weather review, 1963, 91(3): 99-164.
[11] SAMTANEY R, PULLIN D I, KOSOVIĆ B. Direct numerical simulation of decaying com-pressible turbulence and shocklet statistics[J]. Physics of Fluids, 2001, 13(5): 1415-1430.
[12] WANG J, SHI Y, WANG L P, et al. Effect of compressibility on the small-scale structures in isotropic turbulence[J]. Journal of Fluid Mechanics, 2012, 713: 588-631.
[13] FERZIGER J H. Simultaion of Incompressible Turbulent Flows[J]. Journal of Computational Physics, 1987, 69(1): 1-48.
[14] WANG X, WANG J, LI H, et al. Kinetic energy transfer in compressible homogeneous anisotropic turbulence[J]. Physical Review Fluids, 2021, 6(6): 064601.
[15] DONZIS D A, JAGANNATHAN S. Fluctuations of thermodynamic variables in stationary compressible turbulence[J]. Journal of Fluid Mechanics, 2013, 733: 221-244.
[16] JABERI F, LIVESCU D, MADNIA C. Characteristics of chemically reacting compressible homogeneous turbulence[J]. Physics of Fluids, 2000, 12(5): 1189-1209.
[17] VAN DRIEST E R. Turbulent boundary layer in compressible fluids[J]. Journal of the Aeronautical Sciences, 1951, 18(3): 145-160.
[18] TAYLOR G I. Statistical theory of turbulence II[J]. Proceedings of the Royal Society of London. Series A Mathematical and Physical Sciences, 1935, 151(873): 444-454.
[19] RICHARDSON L F. Weather prediction by numerical process[M]. Cambridge university press, 2007.
[20] KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Cr Acad. Sci. URSS, 1941, 30: 301-305.
[21] KOLMOGOROV A N. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number[J]. Journal of Fluid Mechanics, 1962, 13(1): 82-85.
[22] WANG J, WANG L P, XIAO Z, et al. A hybrid numerical simulation of isotropic compressible turbulence[J]. Journal of Computational Physics, 2010, 229(13): 5257-5279.
[23] BURGERS J M. A mathematical model illustrating the theory of turbulence[M]//Advances in applied mechanics: volume 1. Elsevier, 1948: 171-199.
[24] HOPF E. The partial differential equation [J]. Communications on Pure and Applied Mathematics, 1950.
[25] MEECHAM W C, SIEGEL A. Wiener-Hermite expansion in model turbulence at large Reynolds numbers[J]. The Physics of Fluids, 1964, 7(8): 1178-1190.
[26] CHEKHLOV A, YAKHOT V. Kolmogorov turbulence in a random¬force¬driven Burgers equation: anomalous scaling and probability density functions[J]. Physical Review E, 1995, 52(5): 5681.
[27] YAKHOT V, CHEKHLOV A. Algebraic tails of probability density functions in the random force driven Burgers turbulence[J]. Physical review letters, 1996, 77(15): 3118.
[28] GOTOH T, KRAICHNAN R H. Steady-state Burgers turbulence with large-scale forcing[J]. Physics of Fluids, 1998, 10(11): 2859-2866.
[29] WEINAN E, EIJNDEN E V. Asymptotic theory for the probability density functions in Burgers turbulence[J]. Physical review letters, 1999, 83(13): 2572.
[30] EIJNDEN E V, et al. Statistical theory for the stochastic Burgers equation in the inviscid limit [A]. 1999.
[31] BEC J. Universality of velocity gradients in forced Burgers turbulence[J]. Physical Review Letters, 2001, 87(10): 104501.
[32] KOVASZNAY L S. Turbulence in supersonic flow[J]. Journal of the Aeronautical Sciences, 1953, 20(10): 657-674.
[33] MOYAL J E. The spectra of turbulence in a compressible fluid; eddy turbulence and random noise[C]//Mathematical Proceedings of the Cambridge Philosophical Society: volume 48. Cambridge University Press, 1952: 329-344.
[34] TANI I. History of boundary layer theory[J]. Annual review of fluid mechanics, 1977, 9(1): 87-111.
[35] CHU B T, KOVÁSZNAY L S. Non-linear interactions in a viscous heat conducting compressible gas[J]. Journal of Fluid Mechanics, 1958, 3(5): 494-514.
[36] PASSOT T, POUQUET A. Numerical simulation of compressible homogeneous flows in the turbulent regime[J]. Journal of Fluid Mechanics, 1987, 181: 441-466.
[37] ERLEBACHER G, HUSSAINI M, KREISS H, et al. The analysis and simulation of compressible turbulence[J]. Theoretical and Computational Fluid Dynamics, 1990, 2(2): 73-95.
[38] RIBNER H S. Shock-turbulence interaction and the generation of noise: volume 1233[M]. National Advisory Committee for Aeronautics, 1954.
[39] LEE S, LELE S K, MOIN P. Direct numerical simulation of isotropic turbulence interacting with a weak shock wave[J]. Journal of Fluid Mechanics, 1993, 251: 533-562.
[40] LEE S, LELE S K, MOIN P. Interaction of isotropic turbulence with shock waves: effect of shock strength[J]. Journal of Fluid Mechanics, 1997, 340: 225-247.
[41] KIDA S, ORSZAG S A. Energy and spectral dynamics in forced compressible turbulence[J]. Journal of Scientific Computing, 1990, 5(2): 85-125.
[42] LARSSON J, LELE S K. Direct numerical simulation of canonical shock/turbulence interaction [J]. Physics of fluids, 2009, 21(12): 126101.
[43] DONZIS D A. Amplification factors in shock¬turbulence interactions: effect of shock thickness [J]. Physics of Fluids, 2012, 24(1): 011705.
[44] DONZIS D A. Shock structure in shock-turbulence interactions[J]. Physics of Fluids, 2012, 24 (12): 126101.
[45] WANG J, SHI Y, WANG L P, et al. Effect of shocklets on the velocity gradients in highly compressible isotropic turbulence[J]. Physics of Fluids, 2011, 23(12): 125103.
[46] WANG J, YANG Y, SHI Y, et al. Cascade of kinetic energy in three-dimensional compressible turbulence[J]. Physical review letters, 2013, 110(21): 214505.
[47] WANG J, WAN M, CHEN S, et al. Kinetic energy transfer in compressible isotropic turbulence [J]. Journal of Fluid Mechanics, 2018, 841: 581-613.
[48] WANG J, GOTOH T, WATANABE T. Spectra and statistics in compressible isotropic turbu- lence[J]. Physical Review Fluids, 2017, 2(1): 013403.
[49] WANG J, GOTOH T, WATANABE T. Scaling and intermittency in compressible isotropic turbulence[J]. Physical Review Fluids, 2017, 2(5): 053401.
[50] WANG J, WAN M, CHEN S, et al. Cascades of temperature and entropy fluctuations in compressible turbulence[J]. Journal of Fluid Mechanics, 2019, 867: 195-215.
[51] MEYER T. Ueber zweidimensionale Bewegungs vorgaenge in einem Gas, das mit ueberschallgeschwindigkeit stroemt.[J]. Dissertation Goettingen, 1908.
[52] RAYLEIGH L. Aerial plane waves of finite amplitude[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1910, 84(570): 247-284.
[53] ZEMPLEN G. On the possibility of negative shock waves in gas[J]. Comptes Rendus de l’ Académie des Sciences, 1905, 141: 710.
[54] HAYES W. Fundamentals of gas dynamics[M]. Princeton University Press„ 1958.
[55] BETHE H A. On the theory of shock waves for an arbitrary equation of state[M]//Classic papers in shock compression science. Springer, 1942: 421-495.
[56] KLEIN M J. The historical origins of the van der Waals equation[J]. Physica, 1974, 73(1): 28-47.
[57] REDLICH O, KWONG J, et al. An equation of state. Fugacities of gaseous solutions[J]. Chem. Rev., 1949, 44(1): 233-244.
[58] MARTIN J J, HOU Y C. Development of an equation of state for gases[J]. Aiche Journal, 1955, 1: 142-151.
[59] GUARDONE A. Nonclassical gasdynamics: thermodynamic modeling and numerical simulation of multidimensional flows of BZT fluids[D]. Politecnico di Milano Milan, Italy, 2001.
[60] ZELDOVICH J. On the possibility of rarefaction shock waves[J]. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1946, 16(4): 363-364.
[61] THOMPSON P A. A fundamental derivative in gasdynamics[J]. The Physics of Fluids, 1971, 14(9): 1843-1849.
[62] LAMBRAKIS K C, THOMPSON P A. Existence of real fluids with a negative fundamental derivative 𝛤[J]. The Physics of Fluids, 1972, 15(5): 933-935.
[63] THOMPSON P A, LAMBRAKIS K. Negative shock waves[J]. Journal of Fluid Mechanics, 1973, 60(1): 187-208.
[64] CRAMER M. Negative nonlinearity in selected fluorocarbons[J]. Physics of Fluids A: Fluid Dynamics, 1989, 1(11): 1894-1897.
[65] CRAMER M, KLUWICK A. On the propagation of waves exhibiting both positive and negative nonlinearity[J]. Journal of Fluid Mechanics, 1984, 142: 9-37.
[66] CRAMER M, TARKENTON G. Transonic flows of Bethe—Zel’dovich—Thompson fluids[J]. Journal of Fluid Mechanics, 1992, 240: 197-228.
[67] RUSAK Z, WANG C W. Transonic flow of dense gases around an airfoil with a parabolic nose [J]. Journal of Fluid Mechanics, 1997, 346: 1-21.
[68] BROWN B P, ARGROW B M. Nonclassical dense gas flows for simple geometries[J]. AIAA journal, 1998, 36(10): 1842-1847.
[69] CINNELLA P, CONGEDO P, LAFORGIA D. Investigation of BZT transonic flows past an airfoil using a 5th power virial equation of state[C]//Proceedings of the 4th European Congress on Computational Methods in Applied Sciences and Engineering. 2004.
[70] CONGEDO P M, CINNELLA P, CORRE C E. Shape optimization for dense gas flows through turbine cascades[C]//4th International Conference on Computational Fluid Dynamics (ICCFD 4). 2006.
[71] CINNELLA P. Viscous performance of transonic dense gas flows[C]//35th AIAA Fluid Dynamics Conference and Exhibit. 2005: 5284.
[72] CONGEDO P M, CINNELLA P. Aerodynamic performance of transonic BZT flows past an airfoil[J]. AIAA Journal, 2005.
[73] CINNELLA P, CONGEDO P M. Aerodynamic Performance of Transonic Bethe-Zal’dovich-Thompson Flows past an Airfoil[J]. AIAA journal, 2005, 43(2): 370-378.
[74] CINNELLA P, CONGEDO P. Optimal Airfoil Shapes in Viscous Transonic Flows of Dense Gases[C]//36th AIAA Fluid Dynamics Conference and Exhibit. 2006: 3881.
[75] CONGEDO P M, CINNELLA P. Inviscid and viscous behavior of dense gas flows past an airfoil[J]. Journal of Fluid Mechanics, 2007.
[76] CINNELLA P, CONGEDO P M. Inviscid and viscous aerodynamics of dense gases[J]. Journal of Fluid Mechanics, 2007, 580: 179-217.
[77] CINNELLA P, CONGEDO P. Optimal airfoil shapes for viscous transonic flows of Bethe–Zel’ dovich–Thompson fluids[J]. Computers & Fluids, 2008, 37(3): 250-264.
[78] ZAMFIRESCU C, DINCER I. Performance investigation of high-temperature heat pumps with various BZT working fluids[J]. Thermochimica Acta, 2009, 488(1-2): 66-77.
[79] CONGEDO P M, CORRE C, CINNELLA P. Numerical investigation of dense gas effects in turbomachinery[J]. Computers & Fluids, 2011, 49(1): 290-301.
[80] ARGROW B. Computational analysis of dense gas shock tube flow[J]. Shock Waves, 1996, 6 (4): 241-248.
[81] BROWN B, ARGROW B. Two-dimensional shock tube flow for dense gases[J]. Journal of Fluid Mechanics, 1997, 349: 95-115.
[82] FERGASON S, GUARDONE A, ARGROW B. Construction and validation of a dense gas shock tube[J]. Journal of thermophysics and heat transfer, 2003, 17(3): 326-333.
[83] GUARDONE A. Three-dimensional shock tube flows for dense gases[J]. Journal of Fluid Mechanics, 2007, 583: 423-442.
[84] SCIACOVELLI L, CINNELLA P, CONTENT C, et al. Dense gas effects in inviscid homogeneous isotropic turbulence[J]. Journal of Fluid Mechanics, 2016, 800: 140179.
[85] GIAUQUE A, CORRE C, VADROT A. Direct numerical simulations of forced homogeneous isotropic turbulence in a dense gas[J]. Journal of Turbulence, 2020, 21(3): 186208.
[86] SCIACOVELLI L, CINNELLA P, GLOERFELT X. Direct numerical simulations of supersonic turbulent channel flows of dense gases[J]. Journal of Fluid Mechanics, 2017, 821: 153-199.
[87] SCIACOVELLI L, GLOERFELT X, PASSIATORE D, et al. Numerical investigation of high-speed turbulent boundary layers of dense gases[J]. Flow, Turbulence and Combustion, 2020, 105(2): 555-579.
[88] GLOERFELT X, ROBINET J C, SCIACOVELLI L, et al. Dense-gas effects on compressible boundary-layer stability[J]. Journal of Fluid Mechanics, 2020, 893.
[89] VADROT A, GIAUQUE A, CORRE C. Analysis of turbulence characteristics in a temporal dense gas compressible mixing layer using direct numerical simulation[J]. Journal of Fluid Mechanics, 2020, 893.
[90] CHEN S, DOOLEN G D, KRAICHNAN R H, et al. On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(2): 458-463.
[91] PASSOT T, VAZQUEZ-SEMADENI E, POUQUET A. A turbulent model for the interstellar medium. II. Magnetic fields and rotation[A]. 1996.
[92] SUTHERLAND W. LII. The viscosity of gases and molecular force[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1893, 36(223): 507¬531.
[93] CHUNG T H, AJLAN M, LEE L L, et al. Generalized multiparameter correlation for nonpolar and polar fluid transport properties[J]. Industrial & engineering chemistry research, 1988, 27 (4): 671-679.
[94] HUSSAINI M Y, ZANG T A. Spectral methods in fluid dynamics[J]. Annual review of fluid mechanics, 1987, 19(1): 339-367.
[95] LELE S K. Compact finite difference schemes with spectral¬like resolution[J]. Journal of computational physics, 1992, 103(1): 16-42.
[96] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III[M]//Upwind and high-resolution schemes. Springer, 1987: 218-290.
[97] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of computational physics, 1994, 115(1): 200-212.
[98] YEE H, WARMING R, HARTEN A. Implicit total variation diminishing (TVD) schemes for steady-state calculations[J]. Journal of Computational Physics, 1985, 57(3): 327-360.
[99] ADAMS N A, SHARIFF K. A high¬resolution hybrid compact-ENO scheme for shock-turbulence interaction problems[J]. Journal of Computational Physics, 1996, 127(1): 27-51.
[100] PIROZZOLI S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction [J]. Journal of Computational Physics, 2002, 178(1): 81-117.
[101] REN Y X, ZHANG H, et al. A characteristic¬wise hybrid compact¬WENO scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics, 2003, 192(2): 365¬386.
[102] BALSARA D S, SHU C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405¬452.
[103] GOTTLIEB S, SHU C W. Total variation diminishing Runge-Kutta schemes[J]. Mathematics of computation, 1998, 67(221): 73-85.
[104] STEGER J L, WARMING R. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods[J]. Journal of computational physics, 1981, 40(2): 263-293.
[105] LEER B V. Flux-vector splitting for the Euler equation[M]//Upwind and high-resolution schemes. Springer, 1997: 80-89.
[106] ROE P L. Characteristic-based schemes for the Euler equations[J]. Annual review of fluid mechanics, 1986, 18(1): 337-365.
[107] GROSSMAN B, WALTERS R. Analysis of flux-split algorithms for Euler’s equations with real gases[J]. AIAA journal, 1989, 27(5): 524-531.
[108] ZHENG Q, WANG J, NOACK B R, et al. Vibrational relaxation in compressible isotropic turbulence with thermal nonequilibrium[J]. Physical Review Fluids, 2020, 5(4): 044602.
[109] BUARIA D, BODENSCHATZ E, PUMIR A. Vortex stretching and enstrophy production in high Reynolds number turbulence[J]. Physical Review Fluids, 2020, 5(10): 104602.
[110] ASHURST W T, KERSTEIN A, KERR R, et al. Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence[J]. The Physics of fluids, 1987, 30(8): 2343-2353.
[111] CHONG M S, PERRY A E, CANTWELL B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(5): 765-777.
[112] PERRY A E, CHONG M S. A description of eddying motions and flow patterns using critical-point concepts[J]. Annual Review of Fluid Mechanics, 1987, 19(1): 125-155.
[113] PIROZZOLI S, GRASSO F. Direct numerical simulations of isotropic compressible turbulence: influence of compressibility on dynamics and structures[J]. Physics of Fluids, 2004, 16(12): 4386-4407.
修改评论