中文版 | English
题名

工程化 NIR-II 纳米粒子标记的外泌体用于 缺血心肌细胞的修复

其他题名
THEREDUCTION OF APOPTOTIC HYPOXIC CARDIOMYOCYTES USING EXOSOMES LABELED WITHENGINEEREDNIR-II NANOPARTICLS
姓名
姓名拼音
WU Xue
学号
12032523
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
LI KAI
导师单位
生物医学工程系
论文答辩日期
2022-05-07
论文提交日期
2022-06-18
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

心肌梗死是一种死亡率极高、危害大的疾病。随着现代医学发展,急 性心肌梗死的死亡率得到降低,但梗死期间造成不可逆的功能性心肌细胞 凋亡增加了相关心血管疾病发病率,患者仍面临病情反复甚至加重的风险, 因此对于功能性心肌细胞的修复成为当前的研究热点问题。人源诱导的多 功 能 干 细 胞 分 化 的 间 充 质 干 细 胞 ( Induced pluripotent stem cell-derived mesenchymal stem cells,iMSC)作为一种可靠的干细胞来源,由于其增殖 分化能力优异、免疫排斥反应低等优势,在心肌修复领域十分具有应用潜 力。外泌体(Exosome,Exo)在干细胞修复心肌的过程中起着至关重要的 作用,降低了传统干细胞再生疗法中癌变的风险、提升了心肌细胞转化率。 干细胞外泌体的临床应用仍面临较大的挑战,比如外泌体生物分布、生理 功能的机制等关键问题仍有待研究。因此,通过各种成像手段辅助外泌体 进行心肌修复在基础研究与临床应用中尤为重要 。近红外二区( Near Infrared-Ⅱ,NIR-Ⅱ)荧光成像技术兼备了高分辨率、组织穿透深度深、灵 敏度高等优点,因此在生物体内成像研究方面具有广泛的应用前景。在这 项研究里,我们提取了 iMSC 的外泌体(iMSC-Exo),对 NIR-Ⅱ探针进行工 程化处理,获得携带心肌修复相关的 MicroRNA 19a(miR-19a)的纳米粒 子,分别验证了外泌体和纳米粒子对心肌细胞的修复作用。同时在纳米粒 子内装载了氧化铁颗粒,通过外部磁场的作用有效增加心肌细胞摄取纳米 粒子标记外泌体。在细胞和动物模型中,我们初步验证了磁引导的可行性。 通过这项研究,我们创新性的设计并验证了工程化 NIR-Ⅱ纳米粒子标 记外泌体的方案,结合多种表征手段分析标记效率,为外泌体在心肌梗死 的治疗应用打下坚实基础。提出并验证了通过工程化 NIR-Ⅱ纳米粒子提升 外泌体治疗和靶向效果的方案,为生物医学领域研究和临床治疗提供了先 进的技术和解决策略。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-05
参考文献列表

[1] CAPLICE N M. The future of cell therapy for acute myocardial infarction[J]. Nat. Clin. Pract. Cardiovasc. Med, 2006, 3(1): S129-S132.
[2] MADONNA R, VAN LAAKE L W, DAVIDSON S M, et al. Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure[J]. Eur. Heart J, 2016, 37(23): 1789-1798.
[3] VAN DEN AKKER F, DEDDENS J C, DOEVENDANS P A, et al. Cardiac stem cell therapy to modulate inflammation upon myocardial infarction[J]. Biochim Biophys Acta, 2013, 1830(2): 2449-2458.
[4] JUNG J-H, FU X, YANG P C. Exosomes Generated From iPSC-Derivatives: New Direction for Stem Cell Therapy in Human Heart Diseases[J]. Circ. Res, 2017, 120(2): 407-417.
[5] ARJMAND B, ABEDI M, ARABI M, et al. Regenerative Medicine for the Treatment of Ischemic Heart Disease; Status and Future Perspectives[J] Front Cell Dev Biol, 2021,9:704903.
[6] YANG P C. Induced Pluripotent Stem Cell (iPSC)–Derived Exosomes for Precision Medicine in Heart Failure[J]. Circ. Res, 2018, 122(5): 661-663.
[7] BUNGGULAWA E J, WANG W, YIN T, et al. Recent advancements in the use of exosomes as drug delivery systems[J]. J. Nanobiotechnol, 2018, 16(1): 81.
[8] BETZER O, BARNOY E, SADAN T, et al. Advances in imaging strategies for in vivo tracking of exosomes[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020, 12(2): e1594.
[9] LIU H W, CHEN L, XU C, et al. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging[J]. Chem Soc Rev, 2018, 47(18): 7140-7180.
[10] CHEN H, YANG H, ZHANG C, et al. Differential Responses of Transplanted Stem Cells to Diseased Environment Unveiled by a Molecular NIR-II Cell Tracker[J]. Research, 2021(2021): 9798580.
[11] SOUMYA R S, RAGHU K G. Recent advances on nanoparticle-based therapies for cardiovascular diseases[J]. J Cardiol, 2022, S0914-5087(22)00030-2.
[12] MECHANIC O J, GAVIN M, GROSSMAN S A. Acute Myocardial Infarction[M]. Treasure Island (FL): StatPearls Publishing, 2022. https://www.ncbi.nlm.nih.gov/books/NBK459269/.
[13] YANG C F. Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury[J]. Ci Ji Yi Xue Za Zhi, 2018, 30(4): 209-215.
[14] BELIëN H, EVENS L, HENDRIKX M, et al. Combining stem cells in myocardial infarction: The road to superior repair?[J]. Med Res Rev, 2022, 42(1): 343-373.
[15] STEINHOFF G. Re-growth of the adult heart by stem cells?[J]. Eur J Cardiothorac Surg, 2014, 45(1): 6-9.
[16] THYGESEN K, ALPERT J S, JAFFE A S, et al. Third universal definition of myocardial infarction[J]. Circulation, 2012, 126(16): 2020-2035.
[17] WANG J, CHEN Z, DAI Q, et al. Intravenously delivered mesenchymal stem cells prevent microvascular obstruction formation after myocardial ischemia/reperfusion injury[J]. Basic Res. Cardiol, 2020, 115(4): 40.
[18] TANG B L. Maturing iPSC-Derived Cardiomyocytes[J]. Cells, 2020, 9(1).
[19] HORIKOSHI Y, YAN Y, TERASHVILI M, et al. Fatty Acid-Treated Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes Exhibit Adult Cardiomyocyte-Like Energy Metabolism Phenotypes[J]. Cells, 2019, 8(9):1095.
[20] GAO L, GREGORICH Z R, ZHU W, et al. Large Cardiac Muscle Patches Engineered From Human Induced-Pluripotent Stem Cell-Derived Cardiac Cells Improve Recovery From Myocardial Infarction in Swine[J]. Circulation, 2018, 137(16): 1712-1730.
[21] KASHIYAMA N, MIYAGAWA S, FUKUSHIMA S, et al. MHC-mismatched Allotransplantation of Induced Pluripotent Stem Cell-derived Cardiomyocyte Sheets to Improve Cardiac Function in a Primate Ischemic Cardiomyopathy Model[J]. Transplantation, 2019, 103(8): 1582-1590.
[22] YLä-HERTTUALA S. iPSC-Derived Cardiomyocytes Taken to Rescue Infarcted Heart Muscle in Coronary Heart Disease Patients[J]. Mol Ther, 2018, 26(9): 2077.
[23] KHAN K, CARON C, MAHMOUD I, et al. Extracellular Vesicles as a Cell-free Therapy for Cardiac Repair: a Systematic Review and Meta-analysis of Randomized Controlled Preclinical Trials in Animal Myocardial Infarction Models[J]. Stem Cell Rev Rep, 2022, 18(3):1143-1167.
[24] HAUSER P, WANG S, DIDENKO V V. Apoptotic Bodies: Selective Detection in Extracellular Vesicles[J]. Methods Mol Biol, 2017, 1554: 193-200.
[25] CLOOS A S, GHODSI M, STOMMEN A, et al. Interplay Between Plasma Membrane Lipid Alteration, Oxidative Stress and Calcium-Based Mechanism for Extracellular Vesicle Biogenesis From Erythrocytes During Blood Storage[J]. Front Physiol, 2020, 11: 712.
[26] MELDOLESI J. Exosomes and Ectosomes in Intercellular Communication[J]. Curr Biol, 2018, 28(8): R435-R444.
[27] LIU Q, LI S, DUPUY A, et al. Exosomes as New Biomarkers and Drug Delivery Tools for the Prevention and Treatment of Various Diseases: Current Perspectives[J]. Int J Mol Sci, 2021, 22(15):7763.
[28] WANG X, TANG Y, LIU Z, et al. The Application Potential and Advance of Mesenchymal Stem Cell-Derived Exosomes in Myocardial Infarction[J]. Stem Cells Int, 2021, 2021: 5579904.
[29] JADLI A S, PARASOR A, GOMES K P, et al. Exosomes in Cardiovascular Diseases: Pathological Potential of Nano-Messenger[J] Front Cardiovasc Med, 2021, 8: 767488.
[30] WAN Z, ZHAO L, LU F, et al. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium[J]. Theranostics, 2020, 10(1): 218-230.
[31] GUO S, ZHANG Y, ZHANG Y, et al. Multiple Intravenous Injections of Valproic Acid-Induced Mesenchymal Stem Cell from Human-Induced Pluripotent Stem Cells Improved Cardiac Function in an Acute Myocardial Infarction Rat Model[J]. Biomed Res Int, 2020, 2020: 2863501.
[32] ZHANG J, CHEN M, LIAO J, et al. Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Hold Lower Heterogeneity and Great Promise in Biological Research and Clinical Applications[J] Front Cell Dev Biol, 2021, 9: 716907.
[33] HETTIE K S. Targeting Contrast Agents With Peak Near-Infrared-II (NIR-II) Fluorescence Emission for Non-invasive Real-Time Direct Visualization of Thrombosis[J]. Front Mol Biosci, 2021, 8: 670251.
[34] ORTGIES D H, GARCíA-VILLALóN Á L, GRANADO M, et al. Infrared fluorescence imaging of infarcted hearts with Ag2S nanodots[J]. Nano Res, 2019, 12(4): 749-757.
[35] ZHANG N-N, LU C-Y, CHEN M-J, et al. Recent advances in near-infrared II imaging technology for biological detection[J]. J. Nanobiotechnol., 2021, 19(1): 132-132.
[36] MATEOS S, LIFANTE J, LI C, et al. Instantaneous In Vivo Imaging of Acute Myocardial Infarct by NIR-II Luminescent Nanodots[J]. Small, 2020, 16(29): e1907171.
[37] WU Y, WANG C, GUO J, et al. An RGD modified water-soluble fluorophore probe for in vivo NIR-II imaging of thrombosis[J]. Biomater Sci, 2020, 8(16): 4438-4446.
[38] JAYAWARDENA E, MEDZIKOVIC L, RUFFENACH G, et al. Role of miRNA-1 and miRNA-21 in Acute Myocardial Ischemia-Reperfusion Injury and Their Potential as Therapeutic Strategy[J]. Int J Mol Sci, 2022, 23(3):1512.
[39] YANG H, QIN X, WANG H, et al. An in Vivo miRNA Delivery System for Restoring Infarcted Myocardium[J]. ACS Nano, 2019, 13(9): 9880-9894.
[40] GAO F, KATAOKA M, LIU N, et al. Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction[J]. Nat Commun, 2019, 10(1): 1802.
[41] FU Q, LI Z, YE J, et al. Magnetic targeted near-infrared II PA/MR imaging guided photothermal therapy to trigger cancer immunotherapy[J]. Theranostics, 2020, 10(11): 4997-5010.
[42] LEE J R, PARK B W, KIM J, et al. Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair[J]. Sci Adv, 2020, 6(18): eaaz0952.
[43] LIDSKY M E, SPRITZER C E, SHORTELL C K. The role of dynamic contrast-enhanced magnetic resonance imaging in the diagnosis and management of patients with vascular malformations[J]. J Vasc Surg, 2012, 56(3): 757-764.e751.
[44] LI Y, LI Z, HU D, et al. Targeted NIR-II emissive nanoprobes for tumor detection in mice and rabbits[J]. Chem Commun (Camb), 2021, 57(52): 6420-6423.
[45] DING D, GOH C C, FENG G, et al. Ultrabright Organic Dots with Aggregation-Induced Emission Characteristics for Real-Time Two-Photon Intravital Vasculature Imaging[J]. Adv Mater, 2013, 25(42): 6083-6088.

所在学位评定分委会
生物医学工程系
国内图书分类号
R318
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335961
专题工学院_生物医学工程系
推荐引用方式
GB/T 7714
吴雪. 工程化 NIR-II 纳米粒子标记的外泌体用于 缺血心肌细胞的修复[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032523-吴雪-生物医学工程系.(2755KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴雪]的文章
百度学术
百度学术中相似的文章
[吴雪]的文章
必应学术
必应学术中相似的文章
[吴雪]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。