中文版 | English
题名

钌基电催化剂的设计合成及其析氢性能研究

其他题名
PREPARATION AND PERFORMANCE OF RUTHENIUM BASED ELECTROCATALYSTS TOWORDS HYDROGEN EVOLUTION
姓名
姓名拼音
NI Liwen
学号
11930482
学位类型
硕士
学位专业
070304 物理化学
学科门类/专业学位类别
07 理学
导师
李辉
导师单位
材料科学与工程系
论文答辩日期
2022-04-29
论文提交日期
2022-06-18
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  发展氢气作为可再生能源的能源载体,已经被认为是实现全球“碳中和”目标的重要战略。电解水制氢具有高能效、零污染的优势。析氢反应(Hydrogen Evolution ReactionHER)是电解水制氢的阴极反应,多采用铂基催化剂驱动反应。然而铂的成本昂贵和储备稀缺限制了其大规模的应用,因此开发高活性、低成本和高寿命的析氢反应催化剂尤为重要。本文通过对催化剂微观形貌的设计、活性组分电子结构的调控等方式致力于开发Ru基析氢电催化剂。本文研究两种策略:

  采用模板法制备多级结构大孔-介孔的P掺杂碳载体负载原子级分散的Ru-Mo纳米团簇和Ru单原子催化剂,第二种金属Mo的引入既可以提高催化剂的析氢性能,又可以有效地抑制Ru纳米团簇结晶化,趋于形成无定形的超小Ru-Mo纳米团簇,提高金属原子的利用率。Ru-Mo/PC催化剂为析氢反应提供高密度、多样化的活性位点,有利于提升析氢性能。电化学析氢反应测试结果表明,RuMo1.5/PC在碱性介质中表现出优异的析氢性能,10 mA cm2电流密度时仅需过电位17.9 mV

  过渡金属磷化物(Transition-metal Phosphides, TMPs)因经济和易获取的特点备受关注。采用商业碳载体EC制备磷化钌催化剂,通过退火温度的调控得到碳负载不同化学组成的磷化钌催化剂。在酸性和碱性介质中RuP@EC催化剂的析氢活性优于Ru2P@EC,归因于RuP@EC催化剂中P含量较高,带负电荷的P原子可以作为氢离子的受体,并使氢离子在活性位点Ru中心原子上还原生成H2。采用介孔碳制备磷化钌催化剂,随着退火温度升高,RuP纳米颗粒易团聚成大颗粒尺寸,其具有较低的表面能,可以使P稳定不易被氧化,从而提升电化学析氢性能。

其他摘要

    Developing hydrogen as an energy carrier for renewable energy has been considered an important strategy for achieving global carbon neutrality. Hydrogen production from water electrolysis has advantages of high energy efficiency and zero pollution. Hydrogen evolution reaction (HER) is the cathode reaction of hydrogen production from water electrolysis, and platinum-based catalysts are often used to drive the reaction. However, the high cost and scarce reserves of platinum limit its large-scale application, so it is particularly important to develop HER catalysts with high activity, low cost and high life. In this paper, Ru-based electrocatalysts were developed for HER through the design of catalyst microstructure and the regulation of active component electronic structure. Two strategies were explored in this work.

    Hierarchical macroporous-mesoporous P-doped carbon supports were prepared by template method to support atomically dispersed Ru-Mo nanoclusters and Ru monoatomic catalysts. The introduction of the second metal Mo can not only improve the hydrogen evolution performance of the catalyst, but also effectively inhibit the crystallization of Ru nanoclusters, tending to form amorphous ultra-small Ru-Mo nanoclusters and improve the utilization rate of metal atoms. Ru-Mo/PC catalyst provides high-density and diversified active sites for hydrogen evolution reaction, which is conducive to improving hydrogen evolution performance. Electrochemical hydrogen evolution test results showed that RuMo1.5 /PC exhibited excellent HER performance in alkaline medium, and only 17.9 mV of overpotential was required at a current density of 10 mA cm−2.

    Transition-metal phosphides (TMPs) have attracted much attention due to their economic and accessible characteristics. Ruthenium phosphide catalysts were prepared by commercial carbon support EC, and carbon supported ruthenium phosphide catalysts with different chemical compositions were obtained by adjusting the annealing temperature. In acidic and alkaline media, the HER activity of RuP@EC catalyst is better than that of Ru2P@EC, which is attributed to the high P content in RuP@EC catalyst. The negatively charged P atom can be used as the receptor of H+, and the H+ can be reduced to H2 on the active site Ru center atom. Mesoporous carbon was used to prepare ruthenium phosphate catalyst. With the increase of annealing temperature, RuP nanoparticles are easy to agglomerate into large particle size, which has low surface energy and can make P stable and difficult to be oxidized, thus improving the electrochemical hydrogen evolution performance.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] VESBORG PC, SEGER B, CHORKENDORFF I. Recent development in hydrogen evolution reaction catalysts and their practical implementation[J]. The Journal of Physical Chemistry Letters, 2015, 6(6):951-957.
[2] SHIVA KUMAR S, HIMABINDU V. Hydrogen production by PEM water electrolysis – A review[J]. Materials Science for Energy Technologies, 2019, 2(3):442-454.
[3] CHEN JY, DANG L, LIANG H, et al. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe4+ by mössbauer spectroscopy[J]. Journal of the American Chemical Society, 2015, 137(48):15090-15093.
[4] YU P, WANG FM, SHIFA TA, et al. Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction[J]. Nano Energy, 2019, 58:244-276.
[5] ZHENG Y, JIAO Y, VASILEFF A, et al. The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts[J]. Angewandte Chemie International Edition, 2018, 57(26):7568-7579.
[6] ZHU J, HU LS, ZHAO PX, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical Reviews, 2020, 120(2):851-918.
[7] JARAMILLO TF, JORGENSEN KP, BONDE J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834):100-102.
[8] ZHANG RH, ZHANG MR, YANG H, et al. Creating fluorine-doped MoS2 edge electrodes with enhanced hydrogen evolution activity[J]. Small Methods, 2021, 5(11):2100612.
[9] GENG S, TIAN FY, LI MG, et al. Activating interfacial S sites of MoS 2 boosts hydrogen evolution electrocatalysis[J]. Nano Research, 2022, 15(3):1809-1816.
[10] CHO G, PARK Y, KANG H, et al. Transition metal-doped FeP nanoparticles for hydrogen evolution reaction catalysis[J]. Applied Surface Science, 2020, 510:145427.
[11] PEI HJ, ZHANG LM, ZHI G, et al. Rational construction of hierarchical porous FeP nanorod arrays encapsulated in polypyrrole for efficient and durable hydrogen evolution reaction[J]. Chemical Engineering Journal, 2022, 433:133643.
[12] YU FY, GAO Y, LANG ZL, et al. Electrocatalytic performance of ultrasmall Mo2C affected by different transition metal dopants in hydrogen evolution reaction[J]. Nanoscale, 2018, 10(13):6080-6087.
[13] WANG JY, ZHU RL, CHENG JL, et al. Co, Mo2C encapsulated in N-doped carbon nanofiber as self-supported electrocatalyst for hydrogen evolution reaction[J]. Chemical Engineering Journal, 2020, 397:125481.
[14] GU TT, SA RJ, ZHANG LJ, et al. MOF-aided topotactic transformation into nitrogendoped porous Mo2C mesocrystals for upgrading the pH-universal hydrogen evolutionreaction[J]. Journal of Materials Chemistry A, 2020, 8(39):20429-20435.
[15] LEI FC, TANG Z, XU WL, et al. Electronic optimization by coupling FeCo nanoclusters and Pt nanoparticles to carbon nanotubes for efficient hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(17):5895 -5901.
[16] LI YR, WANG SQ, HU YD, et al. Highly dispersed Pt nanoparticles on 2D MoS2 nanosheets for efficient and stable hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2022, 10(10):5273-5279.
[17] LAI YQ, ZHANG ZT, ZHANG ZY, et al. Electronic modulation of Pt nanoclusters through tuning the interface of Pt-SnO2 clusters for enhanced hydrogen evolution catalysis[J]. Chemical Engineering Journal, 2022, 435:135102.
[18] ZHU JT, TU YD, CAI LJ, et al. Defect-assisted anchoring of Pt single atoms on MoS2nanosheets produces high-performance catalyst for industrial hydrogen evolution reaction[J]. Small, 2022, 18(4):e2104824.
[19] JIN HY, SULTAN S, HA M, et al. Simple and scalable mechanochemical synthesis ofnoble metal catalysts with single atoms toward highly efficient hydrogen evolution[J]. Advanced Functional Materials, 2020, 30(25):2000531.
[20] WANG W, WU YX, LIN YX, et al. Confining zero-valent platinum single atoms in α‐ MoC1−x for pH-universal hydrogen evolution reaction[J]. Advanced Functional Materials, 2021:2108464.
[21] LI Z, YU CC, KANG YK, et al. Ultra-small hollow ternary alloy nanoparticles for efficient hydrogen evolution reaction[J]. National science review, 2020, 8(7):nwaa204.
[22] PANG BB, LIU XK, LIU TY, et al. Laser-assisted high-performance PtRu alloy for pH-universal hydrogen evolution[J]. Energy & Environmental Science, 2022, 15(1):102-108.
[23] FEULNER P, MENZEL D. The adsorption of hydrogen on ruthenium (001): Adsorption states, dipole moments and kinetics of adsorption and desorption[J]. Surface Science, 1985, 154(2):465-488.
[24] JU QJ, MA RG, PEI Y, et al. Ruthenium triazine composite: A good match for increasing hydrogen evolution activity through contact electrification[J]. Advanced Energy Materials, 2020, 10(21):2000067.
[25] YANG YJ, WU DX, YU YH, et al. Bridge the activity and durability of Ruthenium for hydrogen evolution reaction with the Ru-O-C link[J]. Chemical Engineering Journal, 2022, 433:134421.
[26] YANG WX, ZHANG WY, LIU R, et al. Amorphous Ru nanoclusters onto Co-doped 1D carbon nanocages enables efficient hydrogen evolution catalysis[J]. Chinese Journal of Catalysis, 2022, 43(1):110-115.
[27] XIAO Y, LIU W, ZHANG Z, et al. Controllable synthesis for high ly dispersed ruthenium clusters confined in nitrogen doped carbon for efficient hydrogen evolution[J]. Journal of Colloid and Interface Science, 2020, 571:205 -212.
[28] LIU Z, ZENG LL, YU JY, et al. Charge redistribution of Ru nanoclusters on Co3O4 porous nanowire via the oxygen regulation for enhanced hydrogen evolution reaction[J]. Nano Energy, 2021, 85:105940.
[29] WU QL, LUO M, HAN JH, et al. Identifying electrocatalytic sites of the nanoporouscopper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte[J]. ACS Energy Letters, 2020, 5(1):192-199.
[30] WANG HY, GAO CY, LI R, et al. Ruthenium–cobalt anoalloy embedded within hollow carbon spheres as a bifunctionally robust catalyst for hydrogen generation from water splitting and ammonia borane hydrolysis[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23):18744-18752.
[31] LI JC, XIAO F, ZHONG H, et al. Secondary-atom-assisted synthesis of single iron atoms anchored on N-doped carbon nanowires for oxygen reduction reaction[J]. ACS Catalysis, 2019, 9(7):5929-5934.
[32] SEH ZW, KIBSGAARD J, DICKENS CF, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321):eaad4998.
[33] FENG QC, ZHAO S, XU Q, et al. Mesoporous nitrogen-doped carbon-nanosphere upported isolated single-atom Pd catalyst for highly efficient semihydrogenation of acetylene[J]. Advanced Materials, 2019, 31(36):1901024.
[34] LIU Y, LI X, ZHANG QH, et al. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots[J]. Angewandte Chemie International Edition, 2020, 59(4):1718 - 1726.
[35] TU KJ, TRANCA D, RODRíGUEZ-HERNáNDEZ F, et al. A novel heterostructure based on RuMo nanoalloys and N-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Advanced Materials, 2020, 32(46):2005433.
[36] SHI YM, ZHANG B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction[J]. Chemical Society Reviews, 2016, 45(6):1529-1541.
[37] CHANG QB, MA JW, ZHU YZ, et al. Controllable synthesis of ruthenium phosphides(RuP and RuP2) for pH-universal hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5):6388-6394.
[38] LIU TT, WANG JM, ZHONG CY, et al. Benchmarking three ruthenium phosphide phases for electrocatalysis of the hydrogen evolution reaction: Experimental and theoretical Insights[J]. Chemistry – A European Journal, 2019, 25(33):7826-7830.
[39] LIU Z, LI Z, LI J, et al. Engineering of Ru/Ru2P interfaces superior to Pt active sites for catalysis of the alkaline hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2019, 7(10):5621-5625.
[40] LI PS, DUAN XX, WANG SY, et al. Amorphous ruthenium-sulfide with isolated catalytic sites for Pt-like electrocatalytic hydrogen production over whole pH range[J]. Small, 2019, 15(46):e1904043.
[41] ZHANG X, ZHOU F, ZHANG S, et al. Engineering MoS2 basal planes for hydrogen evolution via synergistic ruthenium doping and nanocarbon hybridization[J]. Advanced Science, 2019, 6(10):1900090.
[42] CHEN D, LIU TT, WANG PY, et al. Ionothermal route to phase-pure RuB2 catalysts for efficient oxygen evolution and water splitting in acidic media[J]. ACS Energy Letters, 2020, 5(9):2909-2915.
[43] QIAO YY, YUAN PF, PAO CW, et al. Boron-rich environment boosting ruthenium boride on B, N doped carbon outperforms platinum for hydrogen evolution reaction in a universal pH range[J]. Nano Energy, 2020, 75:104881.
[44] ZHANG J, LIU J, XI L, et al. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction[J]. Journal of the American Chemical Society, 2018, 140(11):3876-3879.
[45] JU W, BAGGER A, HAO GP, et al. Understanding activity and selectivity of metal - nitrogen-doped carbon catalysts for electrochemical reduction of CO2[J]. Nature Communications, 2017, 8(1):944.
[46] EILERT A, CAVALCA F, ROBERTS FS, et al. Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction[J]. Journal of Physical Ch emistry Letters, 2017, 8(1):285-290.
[47] ZHANG ZL, CAI J, ZHU H, et al. Simple construction of ruthenium single atoms on electrospun nanofibers for superior alkaline hydrogen evolution: A dynamic transformation from clusters to single atoms[J]. Chemical Engineering Journal, 2020, 392:123655.
[48] WU KL, SUN KA, LIU SJ, et al. Atomically dispersed Ni-Ru-P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution[J]. Nano Energy, 2021, 80:105467.
[49] KWEON DH, OKYAY MS, KIM SJ, et al. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency[J]. Nature Communications, 2020, 11(1):1278.
[50] MAHMOOD J, LI F, JUNG SM, et al. An efficient and pH-universal ruthenium-basedcatalyst for the hydrogen evolution reaction[J]. Nature Nanotechnology, 2017, 12(5):441-446.
[51] LIU HX, PENG XY, LIU XJ. Single-atom catalysts for the hydrogen evolution reaction[J]. ChemElectroChem, 2018, 5(20):2963-2974.
[52] PU ZH, AMIINU IS, CHENG RL, et al. Single-atom catalysts for electrochemical hydrogen evolution reaction: Recent advances and future perspectives[J]. Nano -Micro Letters, 2020, 12(1):21.
[53] WANG YX, SU HY, HE YH, et al. Advanced electrocatalysts with single-metal-atom active sites[J]. Chemical Reviews, 2020, 120(21):12217-12314.
[54] CAO D, WANG JY, XU HX, et al. Construction of dual-site atomically dispersed electrocatalysts with Ru-C5 single atoms and Ru-O4 nanoclusters for accelerated alkali hydrogen evolution[J]. Small, 2021, 17(31):2101163.
[55] LIANG J, ZHENG Y, CHEN J, et al. Facile oxygen reduction on a three-dimensionallyordered macroporous graphitic C3N4/carbon composite electrocatalyst[J]. Angewandte Chemie International Edition, 2012, 51(16):3892-3896.
[56] GE RX, WANG S, SU JW, et al. Phase-selective synthesis of self-supported RuP filmsfor efficient hydrogen evolution electrocatalysis in alkaline media[J]. Nanoscale, 2018,10(29):13930-13935.
[57] YU J, GUO YA, SHE SX, et al. Bigger is surprisingly better: Agglomerates of larger RuP nanoparticles outperform benchmark Pt nanocatalysts for the hydrogen evolutionreaction[J]. Advanced Materials, 2018, 30(39):e1800047.
[58] CHE ZW, LU XY, CAI BF, et al. Ligand-controlled synthesis of high density and ultrasmall Ru nanoparticles with excellent electrocatalytic hydrogen evolution performance [J]. Nano Research, 2021, 15(2):1269-1275.
[59] YANG D, LI P, GAO XY, et al. Modulating surface segregation of Ni2P-Ru2P/CCG nanoparticles for boosting hydrogen evolution reaction in pH-universal[J]. Chemical Engineering Journal, 2022, 432:134422.
[60] LI WQ, ZHANG H, ZHANG K, et al. Monodispersed ruthenium nanoparticles interfacially bonded with defective nitrogen-and-phosphorus-doped carbon nanosheets enable pH-universal hydrogen evolution reaction[J]. Applied Catalysis B: Environmental, 2022, 306:121095.
[61] GAO YX, CHEN Z, ZHAO Y, et al. Facile synthesis of MoP-Ru2P on porous N, P codoped carbon for efficiently electrocatalytic hydrogen evolution reaction in full pH range[J]. Applied Catalysis B: Environmental, 2022, 303:120879.
[62] ZHAO YM, WANG XW, CHENG GZ, et al. Phosphorus-induced activation of ruthenium for boosting hydrogen oxidation and evolution electrocatalysis[J]. ACS Catalysis, 2020, 10(20):11751-11757.
[63] ZHONG CL, ZHOU QW, LI SW, et al. Enhanced synergistic catalysis by a novel triplephase interface design of NiO/Ru@Ni for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2019, 7(5):2344-2350.
[64] ZHU YL, TAHINI HA, WANG Y, et al. Pyrite-type ruthenium disulfide with tunable disorder and defects enables ultra-efficient overall water splitting[J]. Journal of Materials Chemistry A, 2019, 7(23):14222-14232.
[65] JIANG P, YANG Y, SHI RH, et al. Pt-like electrocatalytic behavior of Ru-MoO2 nanocomposites for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2017, 5(11):5475-5485.
[66] ZHANG Y, XIAO J, LV QY, et al. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes[J]. Frontiers of Chemical Science and Engineering, 2018, 12(3):494-508.
[67] HUGHES JP, ROWLEY-NEALE S, BANKS C. Enhancing the efficiency of the hydrogen evolution reaction utilising Fe3P bulk modified screen-printed electrodes via the application of a magnetic field[J]. RSC Advances, 2021, 11(14):8073 -8079.
[68] MAHMOOD N, YAO YD, ZHANG JW, et al. Electrocatalysts for hydrogen evolution in alkaline electrolytes: Mechanisms, challenges, and prospective solutions[J]. Advanced Science, 2018, 5(2):1700464.
[69] PAN Y, ZHANG C, LIN Y, et al. Electrocatalyst engineering and structure -activity relationship in hydrogen evolution reaction: From nanostructures to single atoms[J]. Science China Materials, 2020, 63(6):921-948.
[70] LIU XH, WEI B, SU R, et al. Mo-doped cobalt phosphide nanosheets for efficient hydrogen generation in an alkaline media[J]. Energy Technology, 2019, 7(6):1900021.
[71] XU JY, LIU TF, LI JJ, et al. Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide[J]. Energy & Environmental Science, 2018, 11(7):1819-1827.
[72] QIN Q, JANG H, CHEN LL, et al. Low loading of RhxP and RuP on N, P codoped carbon as two trifunctional electrocatalysts for the oxygen and hydrogen electrode reactions[J]. Advanced Energy Materials, 2018, 8(29):1801478.
[73] CHENG M, GENG HB, YANG Y, et al. Optimization of the hydrogen-adsorption freeenergy of Ru-based catalysts towards high-efficiency hydrogen evolution reaction at all pH[J]. Chemistry – A European Journal, 2019, 25(36):8579-8584.
[74] LI YT, CHU FQ, BU YF, et al. Controllable fabrication of uniform ruthenium phosphide nanocrystals for the hydrogen evolution reaction[J]. Chemical Communications, 2019, 55(54):7828-7831.
[75] MORGAN DJ. Resolving ruthenium: XPS studies of common ruthenium material [J]. Surface and Interface Analysis, 2015, 47(11):1072-1079.
[76] WILSON AD, SHOEMAKER RK, MIEDANER A, et al. Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(17):6951-6956.
[77] BARTON BE, RAUCHFUSS TB. Hydride-containing models for the active site of thenickel-iron hydrogenases[J]. Journal of the American Chemical Society, 2010, 132(42):14877-14885.
[78] SI CD, WU ZX, WANG J, et al. Enhanced the hydrogen evolution performance by ruthenium nanoparticles doped into cobalt phosphide nanocages[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(11):9737-9742.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TQ152
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335962
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
倪俪文. 钌基电催化剂的设计合成及其析氢性能研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930482-倪俪文-材料科学与工程(5102KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[倪俪文]的文章
百度学术
百度学术中相似的文章
[倪俪文]的文章
必应学术
必应学术中相似的文章
[倪俪文]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。