[1] BART SF, LOBER TA, HOWE RT,et al. Design considerations for microfabricated electric actuators[J]. Sensors and Actuators, 1988,14(1):269-292.
[2] FAN LS, TAI YC, MULLER RS. IC-processed electrostatic micromotors[J]. Sensors and Actuators, 1988, 20(3): 41-47
[3] NIINO T, HIGUCHI T, EGAWA S. Dual excitation multiphase electrostatic drive[C].// IEEE Ind. App. Conf. England:IEEE. 1995:1318-1325.
[4] YAMAMOTO A, NIINO T, HIGUCHI A. Modeling and identification of an electrostatic motor[J]. Precision engineering,2000, 30(1): 104-113.
[5] ZHANG ZG, YAMASHITA N, GONDO M, et al. Electrostatically actuated robotic fish: Design and control for high-mobility open-loop swimming[J]. IEEE transactions on Robotics, 2008, 24(1): 118-129.
[6] HOSOBATA T, YAMAMOTO A. Mixed reality system on flat panel display with real object driven by synchronous transparent electrostatic actuator[C]//Proc. Int. Conf. Multimedia Human Comput. Interaction. 2013: 127-1-127-7.
[7] WANG HQ, YAMAMOTO A. Analyses and Solutions for the Buckling of Thin and Flexible Electrostatic Inchworm Climbing Robots[J]. IEEE Transactions on Robotics, 2017, 33(4): 889-900.
[8] WANG HQ, YAMAMOTO A, HIGUCHI T. A crawler climbing robot integrating electroadhesion and electrostatic actuation[J]. International Journal of Advanced Robotic Systems, 2014, 11(12): 191.
[9] WANG HQ, YAMAMOTO A, HIGUCHI T. Electrostatic-motor-driven electroadhesive robot[C].// Intelligent Robots and Systems (IROS). England:IEEE,2012: 914-919.
[10] ZHANG G, YAMAMOTO A. Toward self-sensing of an electrostatic film motor using driving currents[C]// IEEE International Conference on Industrial Technology (ICIT). England: IEEE,2018: 551-556.
[11] YAMAMOTO A, TSURUTA S, HIGUCHI T. Planar 3-dof paper sheet manipulation using electrostatic induction[C]// IEEE International Symposium on Industrial Electronics.England: IEEE, 2010: 493-498.
[12] MORIN AH. Elastic diaphragm: US,2 642 091[P]. 1953-9-15.
[13] BALDWIN HW. Realizable models of muscle function[J]. Proceedings of the First Rock Biomechanics Symposium,1969,14(1): 139–148.
[14] DAERDEN F.Conception and realization of Pleated Pneumatic Artificial Muscles and their use as compliant actuation elements[D]. Brussel:Vrije Universiteit PhD Thesis, 1999,1-6.
[15] DAERDEN F, LEFEBER D. The concept and design of pleated pneumatic artificial muscles[J]. International Journal of Fluid Power, 2001, 2(3):41–50.
[16] 谭俊哲,闫家政,王树杰,等. 仿生水母机器人SMA驱动技术及试验研究[J]. 中国海洋大学学报((自然科学版)),2018,48(12):129-134.
[17] 王扬威,兰博文,刘凯,等. 形状记忆合金丝驱动的柔性机械臂建模与实验[J]. 浙江大学学报(工学版),2018,52(04):628-634+673.
[18] HINES L, ARABAGI V, SITTI M. Shape memory polymer-based flexure stiffness control in a miniature flapping-wing robot[J]. IEEE Transactions on Robotics, 2012, 28(4): 987-990.
[19] 自强,王田苗,刘达. 医疗机器人技术发展综述[J]. 机械工程学报,2015,51(13):45-52.
[20] MA KY, CHIRARATTANANON P, FULLER SB, et al. Controlled flight of a biologically inspired, insect-scale robot[J]. Science, 2013, 340(6132): 603-607.
[21] 陈畅, 张卫平, 邹阳, 等. 压电驱动的六足爬行机器人的设计与制造[J]. 压电与声光, 2018 (5): 17.
[22] 李一帆,张卫平,邹阳,等. 压电式微型仿生六足分节机器人结构设计与加工工艺研究[J]. 机械设计与制造,2017(S1):213-216.
[23] SHI L, HE Y, GUO S, et al. IPMC actuator-based a movable robotic venus flytrap[C]// ICME International Conference on Complex Medical Engineering. England: IEEE, 2013: 375-378.
[24] 汪磊. IPMC人工肌肉驱动的胶囊机器人推进性能优化研究[D]. 南京: 南京航空航天大学工学硕士学位论文,2017,16-23.
[25] 沈奇,韩晨皓,王田苗,等. 基于IPMC仿生机器鱼推进效率实验研究[J].北京航空航天大学学报,2014,40(12):1730-1735.
[26] GU G, ZOU J, ZHAO R, et al. Soft wall-climbing robots[J]. Science Robotics, 2018, 3(25): 2874.
[27] ONAL CD, TOLLY MT, WOOD RJ, et al. Origami-Inspired Printed Robots[J]. IEEE/ASME Transactions on Mechatronics,2015, 20(5): 2214-2221.
[28] ONAL CD, WOOD RJ, RUS D. An Origami-Inspired Approach to Worm Robots[J]. IEEE/ASME Transactions on Mechatronics,2013, 18(2):430-438.
[29] LI S, VOGT DM,RUS D, et al Fluid-driven origami-inspired artificial muscles[J]. Proceedings of the National Academy of Sciences, 2017, 114(50): 13132.
[30] LU H, ZHANG M, YANG Y, et al. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions[J]. Nature communications, 2018, 9(1): 3944.
[31] 张永顺,于宏海,阮晓燕,等. 新型肠道胶囊式微型机器人的运动特性[J]. 机械工程学报,2009,45(08):18-23.
[32] WENGUANG WANG, DONGLIANG FAN, RENJIE ZHU, et al. Modeling and Optimization of Electrostatic Film Actuators Based on the Method of Moments[J]. Soft Robotics,2021, 8(6) :651-661.
[33] 齐锦博,印松,刘俊.汽轮机叶片裂痕检测机器人控制系统的设计[J].仪表技术与传感器,2022(02):96-100+106.
[34] 陈叶凯,梁冬泰,陈特欢,彭文飞,崔杰.基于分组蚁群算法的复杂零件视觉检测机器人路径规划[J].机械制造,2022,60(01):7-13+36.
[35] 郑家伟.隧道爬壁检测机器人视觉系统的自动调焦技术研究[J].信息技术与信息化,2021(12):223-225.
[36] 毛柳伟,王国庆.小口径管道自适应内检测机器人研究[J].机械设计与制造,2021(10):229-232.
[37] 洪逸凡,谭建平.基于柔索驱动的锅炉检测机器人轨迹规划研究[J].传感器与微系统,2021,40(07):25-27+31.
[38] 李文章. 应急管道检测机器人的研制与试验[D].北京:北京交通大学工学硕士学位论文,2021:45-55.
[39] 翟慧,杨奥棋.舰船管道检测机器人最优移动路径自动规划算法[J].舰船科学技术,2021,43(08):196-198.
[40] FEI F, LENG Y, XIAN S, et al. Design of an Origami Crawling Robot with Reconfigurable Sliding Feet[J]. Applied Science, 2022, 12(1), 2520.
[41] ZHAO R, DAI H, YAO H. Liquid-Metal Magnetic Soft Robot With Reprogrammable Magnetization and Stiffness[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 4535-4541.
修改评论