[1] GLICKSMAN L R. Energy efficiency in the built environment[J]. Physics Today, 2008, 61(7): 35-40.
[2] BAETENS R, JELLE B P, GUSTAVSEN A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review[J]. Solar Energy Materials and Solar Cells, 2010, 94(2): 87-105.
[3] HORDES A, GARCIA G, GAZQUEZ J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites[J]. Nature 2013, 500(7462): 323-326.
[4] BARAWI M, DE TRIZIO L, GIANNUZZI R, et al. Dual band electrochromic devices based on Nb-Doped TiO2 nanocrystalline electrodes[J]. ACS Nano, 2017, 11(4): 3576-3584.
[5] WEN R T, NIKLASSON G A, GRANQVIST C G. Eliminating electrochromic degradation in amorphous TiO2 through Li-ion detrapping[J]. ACS Applied Materials Interfaces, 2016, 8(9): 5777-5782.
[6] ZHANG S, CAO S, ZHANG T, et al. Plasmonic Oxygen-deficient TiO2-x nanocrystals for dual-band electrochromic smart windows with efficient energy recycling[J]. Advanced Materials, 2020, 32(43): e2004686.
[7] WEN R-T, GRANQVIST C G, NIKLASSON G A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films[J]. Nature Materials, 2015, 14(10): 996-1001.
[8] WEN R-T, ARVIZU M A, MORALES-LUNA M, et al. Ion trapping and detrapping in amorphous tungsten oxide thin films observed by real-time electro-optical monitoring[J]. Chemistry of Materials, 2016, 28(13): 4670-4676.
[9] QU H-Y, PRIMETZHOFER D, ARVIZU M A, et al. Electrochemical rejuvenation of anodically coloring electrochromic nickel oxide thin films[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42420-42424.
[10] GRANQVIST C G. Electrochromism and electrochromic devices[J]. The CRC Handbook of Solid State Electrochemistry, 2019: 587-615.
[11] CHANG I, GILBERT B, SUN T. Electrochemichromic systems for display applications[J]. Journal of The Electrochemical Society, 1975, 122(7): 955.
[12] WU W, WANG M, MA J, et al. Electrochromic metal oxides: Recent progress and prospect[J]. Advanced Electronic Materials, 2018, 4(8): 1800185.
[13] DEB S K. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications[J]. Solar Energy Materials and Solar Cells, 2008, 92(2): 245-258.
[14] SOMANI P R, RADHAKRISHNAN S. Electrochromic materials and devices: Present and future[J]. Materials Chemistry and Physics, 2003, 77(1): 117-133.
[15] PLATT J R. Electrochromism, a possible change of color producible in dyes by an electric field[J]. The Journal of Chemical Physics, 1961, 34(3): 862-863.
[16] DEB S. Electrochromic characters of WO3[J]. Applied Optics, 1969, 3: 193.
[17] SHARMA N, DEEPA M, VARSHNEY P, et al. Influence of organic additive on the morphological, electrical and electrochromic properties of sol-gel derived WO3 coatings[J]. Journal of Sol-gel Science and Technology, 2000, 18(2): 167-173.
[18] KOLB D M, ALKIRE R. Advances in electrochemical science and engineering[M]. Wiley Online Library, 2002.
[19] LAMPERT C M. Innovative solar optical materials[J]. Optical Engineering, 1984, 23(1): 92-97.
[20] RAUH R D. Electrochromic windows: An overview[J]. Electrochimica Acta, 1999, 44(18): 3165-3176.
[21] HERNANDEZ T S, ALSHURAFA M, STRAND M T, et al. Electrolyte for improved durability of dynamic windows based on reversible metal electrodeposition[J]. Joule, 2020, 4(7): 1501-1513.
[22] TSUBOI A, NAKAMURA K, KOBAYASHI N. A localized surface plasmon resonance-based multicolor electrochromic device with electrochemically Size-Controlled silver nanoparticles[J]. Advanced Materials, 2013, 25(23): 3197-3201.
[23] HORDES A, GARCIA G, GAZQUEZ J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites[J]. Nature, 2013, 500(7462): 323-326.
[24] CAO S, ZHANG S, ZHANG T, et al. A visible light-near-infrared dual-band smart window with internal energy storage[J]. Joule, 2019, 3(4): 1152-1162.
[25] CHENG W, HE J, DETTELBACH K E, et al. Photodeposited amorphous oxide films for electrochromic windows[J]. Chemistry, 2018, 4(4): 821-832.
[26] LI X, PERERA K, HE J, et al. Solution-processable electrochromic materials and devices: roadblocks and strategies towards large-scale applications[J]. Journal of Materials Chemistry C, 2019, 7(41): 12761-12789.
[27] WEN R T , NIKLASSON G A , GRANQVIST C G. Sustainable rejuvenation of electrochromic WO3 films[J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28100-28104.
[28] CAI S, WEN H, WANG S, et al. Electrochromic polymers electrochemically polymerized from 2, 5–dithienylpyrrole (DTP) with different triarylamine units: Synthesis, characterization and optoelectrochemical properties[J]. Electrochimica Acta, 2017, 228: 332-342.
[29] LIU L, DU K, HE Z, et al. High-temperature adaptive and robust ultra-thin inorganic all-solid-state smart electrochromic energy storage devices[J]. Nano Energy, 2019, 62: 46-54.
[30] ZHANG L, WANG B, LI X, et al. Further understanding of the mechanisms of electrochromic devices with variable infrared emissivity based on polyaniline conducting polymers[J]. Journal of Materials Chemistry C, 2019, 7(32): 9878-9891.
[31] SHEN L, ZHENG J, XU C. Enhanced electrochromic switches and tunable green fluorescence based on terbium ion doped WO3 films[J]. Nanoscale, 2019, 11(47): 23049-23057.
[32] WANG Z, WANG X, CONG S, et al. Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry-perot nanocavities[J]. Nature Communications, 2020, 11(1): 1-9.
[33] GáZQUEZ M J, BOLIVAR J P, GARCIA-TENORIOGA R, et al. A review of the production cycle of titanium dioxide pigment[J]. Materials Sciences and Applications, 2014, 05(07):441-458
[34] SERPONE N, DONDI D, ALBINI A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products[J]. Inorganica Chimica Acta, 2007, 360(3): 794-802.
[35] YAMASHITA H, HARADA M, MISAKA J, et al. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2[J]. Catalysis Today, 2003, 84(3-4): 191-196.
[36] BARD A J. Design of semiconductor photoelectrochemical systems for solar energy conversion[J]. The Journal of Physical Chemistry, 1982, 86(2): 172-177.
[37] CHOI H C, AHN H-J, JUNG Y M, et al. Characterization of the structures of size-selected TiO 2 nanoparticles using X-ray absorption spectroscopy[J]. Applied Spectroscopy, 2004, 58(5): 598-602.
[38] XIAOBO C. Titanium dioxide nanomaterials and their energy applications[J]. Chinese Journal of Catalysis, 2009, 30(8): 839-851.
[39] SENNIK E, COLAK Z, KIHNC N, et al. Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4420-4427.
[40] JAROENWORALUCK A, PIJARN N, KOSACHAN N, et al. Nanocomposite TiO2–SiO2 gel for UV absorption[J]. Chemical Engineering Journal, 2012, 181: 45-55.
[41] MOR G K, VARGHESE O K, PAULOSE M, et al. Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements[J]. Thin Solid Films, 2006, 496(1): 42-48.
[42] CROMER D T, HERRINGTON K. The structures of anatase and rutile[J]. Journal of the American Chemical Society, 1955, 77(18): 4708-4709.
[43] LANDMANN M, RAULS E, SCHMIDT W. The electronic structure and optical response of rutile, anatase and brookite TiO2[J]. Journal of Physics: Condensed Matterials, 2012, 24(19): 195503.
[44] DYLLA A G, HENKELMAN G, STEVENSON K J. Lithium insertion in nanostructured TiO2 (B) architectures[J]. Accounts of Chemical Research, 2013, 46(5): 1104-1112.
[45] LI G, LI L, BOERIO-GOATES J, et al. High purity anatase TiO2 nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry[J]. Journal of the American Chemical Society, 2005, 127(24): 8659-8666.
[46] REYES-CORONADO D, RODRIGUEZ-GATTORNO G, ESPINOSA-PESQUEIRA M, et al. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile[J]. Nanotechnology, 2008, 19(14): 145605.
[47] MARCHAND R, BROHAN L, TOURNOUX M. TiO2 (B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17[J]. Materials Research Bulletin, 1980, 15(8): 1129-1133.
[48] THOMPSON T L, YATES J T. Surface science studies of the photoactivation of TiO2 new photochemical processes[J]. Chemical Reviews, 2006, 106(10): 4428-4453.
[49] DAHLMAN C J, HEO S, ZHANG Y, et al. Dynamics of lithium insertion in electrochromic titanium dioxide nanocrystal ensembles[J]. Journal of the American Chemical Society, 2021, 143(22): 8278-8294.
[50] JAIN N K, SAWANT M S, NIKAM S H, et al. Metal deposition: Plasma-based processes[J]. Encyclopedia of Plasma Technology, 2016: 722-740.
[51] LEVI M, AURBACH D. Distinction between energetic inhomogeneity and geometric non-uniformity of ion insertion electrodes based on complex impedance and complex capacitance analysis[J]. The Journal of Physical Chemistry B, 2005, 109(7): 2763-2773.
[52] LEE D-H, LEE B-H, SINHA A K, et al. Engineering titanium dioxide nanostructures for enhanced lithium-ion storage[J]. Journal of the American Chemical Society, 2018, 140(48): 16676-16684.
[53] ZHU K, WANG Q, KIM J-H, et al. Pseudocapacitive lithium-ion storage in oriented anatase TiO2 nanotube arrays[J]. The Journal of Physical Chemistry C, 2012, 116(22): 11895-11899.
[54] WANG J, POLLEUX J, LIM J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(40): 14925-14931.
[55] BISQUERT J. Physical electrochemistry of nanostructured devices[J]. Physical Chemistry Chemical Physics, 2008, 10(1): 49-72.
[56] HE T, WANG L, FABREGAT-SANTIAGO F, et al. Electron trapping induced electrostatic adsorption of cations: a general factor leading to photoactivity decay of nanostructured TiO2[J]. Journal of Materials Chemistry A, 2017, 5(14): 6455-6464.
[57] YUWONO J A, BURR P, GALVIN C, et al. Atomistic insights into lithium storage mechanisms in anatase, rutile, and amorphous TiO2 electrodes[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1791-1806.
[58] WAGEMAKER M, KEARLEY G J, VAN WELL A A, et al. Multiple Li positions inside oxygen octahedra in lithiated TiO2 anatase[J]. Journal of the American Chemical Society, 2003, 125(3): 840-848.
[59] LIU L, CHEN X. Titanium dioxide nanomaterials: Self-structural modifications[J]. Chemical Reviews, 2014, 114(19): 9890-9918.
修改评论