中文版 | English
题名

非晶二氧化钛电致变色薄膜中的离子俘获与反俘获研究

其他题名
TRAPPING AND DE-TRAPPING IN AMORPHOUS TITANIUMDIOXIDEELECTROCHROMIC THIN FILMS
姓名
姓名拼音
HUANG Siyuan
学号
11930236
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
温瑞涛
导师单位
材料科学与工程系
论文答辩日期
2022-04-30
论文提交日期
2022-06-18
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

电致变色薄膜可以控制可见光和红外光的透过率,因此被广泛应用于智能窗领域。在微小电场(0-3伏)调节下,它可以有效地改变室内的明暗强度以及温度。因此,近年来人们对于电致变色材料的需求日益增加。尽管开发用于改进电致变色器件性能的新型材料非常重要,但减少甚至消除电致变色材料在工作过程中的性能退化同样是一个关键科学问题。二氧化钛作为一种无机电致变色材料被广泛研究,其性能在长时间循环后的退化是不可能避免的。有限的使用寿命极大地阻碍了二氧化钛作为电致变色材料的商业化应用。因此本文研究二氧化钛电致变色性能退化的原因并探索了使其性能恢复的方法。

本课题采用磁控溅射法在氧化铟锡玻璃衬底上制备得到了厚度在270纳米左右的非晶二氧化钛薄膜。所制备的薄膜结构完整且具有良好的电致变色性能。通过电化学-原位光谱测试、X射线衍射、扫描电子显微镜、X射线光电子能谱等表征手段,对薄膜的结构、性能退化的过程、原因以及恢复方法进行了深入的研究。

结果表明二氧化钛薄膜在工作过程中的性能衰减是由于嵌入离子被俘获在主体材料内部所致。根据施加在二氧化钛薄膜所的电压窗口不同,当插入的离子被浅层俘获位点俘获时,会导致薄膜的着色态单调衰减;而当离子被深层俘获位点以及改性的浅层俘获位点俘获时,薄膜的着色态与漂白态会同时发生衰减。同时,俘获位点中的离子可通过反俘获过程得以释放,从而使二氧化钛薄膜恢复其初始性能。此外,实验探究了非晶二氧化钛中不同离子俘获位点的能量关系与形成过程,并论证了非晶二氧化钛中的可逆位点与各个俘获位点是可以通过离子的俘获和反俘获相互转换。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1] GLICKSMAN L R. Energy efficiency in the built environment[J]. Physics Today, 2008, 61(7): 35-40.
[2] BAETENS R, JELLE B P, GUSTAVSEN A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review[J]. Solar Energy Materials and Solar Cells, 2010, 94(2): 87-105.
[3] HORDES A, GARCIA G, GAZQUEZ J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites[J]. Nature 2013, 500(7462): 323-326.
[4] BARAWI M, DE TRIZIO L, GIANNUZZI R, et al. Dual band electrochromic devices based on Nb-Doped TiO2 nanocrystalline electrodes[J]. ACS Nano, 2017, 11(4): 3576-3584.
[5] WEN R T, NIKLASSON G A, GRANQVIST C G. Eliminating electrochromic degradation in amorphous TiO2 through Li-ion detrapping[J]. ACS Applied Materials Interfaces, 2016, 8(9): 5777-5782.
[6] ZHANG S, CAO S, ZHANG T, et al. Plasmonic Oxygen-deficient TiO2-x nanocrystals for dual-band electrochromic smart windows with efficient energy recycling[J]. Advanced Materials, 2020, 32(43): e2004686.
[7] WEN R-T, GRANQVIST C G, NIKLASSON G A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films[J]. Nature Materials, 2015, 14(10): 996-1001.
[8] WEN R-T, ARVIZU M A, MORALES-LUNA M, et al. Ion trapping and detrapping in amorphous tungsten oxide thin films observed by real-time electro-optical monitoring[J]. Chemistry of Materials, 2016, 28(13): 4670-4676.
[9] QU H-Y, PRIMETZHOFER D, ARVIZU M A, et al. Electrochemical rejuvenation of anodically coloring electrochromic nickel oxide thin films[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42420-42424.
[10] GRANQVIST C G. Electrochromism and electrochromic devices[J]. The CRC Handbook of Solid State Electrochemistry, 2019: 587-615.
[11] CHANG I, GILBERT B, SUN T. Electrochemichromic systems for display applications[J]. Journal of The Electrochemical Society, 1975, 122(7): 955.
[12] WU W, WANG M, MA J, et al. Electrochromic metal oxides: Recent progress and prospect[J]. Advanced Electronic Materials, 2018, 4(8): 1800185.
[13] DEB S K. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications[J]. Solar Energy Materials and Solar Cells, 2008, 92(2): 245-258.
[14] SOMANI P R, RADHAKRISHNAN S. Electrochromic materials and devices: Present and future[J]. Materials Chemistry and Physics, 2003, 77(1): 117-133.
[15] PLATT J R. Electrochromism, a possible change of color producible in dyes by an electric field[J]. The Journal of Chemical Physics, 1961, 34(3): 862-863.
[16] DEB S. Electrochromic characters of WO3[J]. Applied Optics, 1969, 3: 193.
[17] SHARMA N, DEEPA M, VARSHNEY P, et al. Influence of organic additive on the morphological, electrical and electrochromic properties of sol-gel derived WO3 coatings[J]. Journal of Sol-gel Science and Technology, 2000, 18(2): 167-173.
[18] KOLB D M, ALKIRE R. Advances in electrochemical science and engineering[M]. Wiley Online Library, 2002.
[19] LAMPERT C M. Innovative solar optical materials[J]. Optical Engineering, 1984, 23(1): 92-97.
[20] RAUH R D. Electrochromic windows: An overview[J]. Electrochimica Acta, 1999, 44(18): 3165-3176.
[21] HERNANDEZ T S, ALSHURAFA M, STRAND M T, et al. Electrolyte for improved durability of dynamic windows based on reversible metal electrodeposition[J]. Joule, 2020, 4(7): 1501-1513.
[22] TSUBOI A, NAKAMURA K, KOBAYASHI N. A localized surface plasmon resonance-based multicolor electrochromic device with electrochemically Size-Controlled silver nanoparticles[J]. Advanced Materials, 2013, 25(23): 3197-3201.
[23] HORDES A, GARCIA G, GAZQUEZ J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites[J]. Nature, 2013, 500(7462): 323-326.
[24] CAO S, ZHANG S, ZHANG T, et al. A visible light-near-infrared dual-band smart window with internal energy storage[J]. Joule, 2019, 3(4): 1152-1162.
[25] CHENG W, HE J, DETTELBACH K E, et al. Photodeposited amorphous oxide films for electrochromic windows[J]. Chemistry, 2018, 4(4): 821-832.
[26] LI X, PERERA K, HE J, et al. Solution-processable electrochromic materials and devices: roadblocks and strategies towards large-scale applications[J]. Journal of Materials Chemistry C, 2019, 7(41): 12761-12789.
[27] WEN R T , NIKLASSON G A , GRANQVIST C G. Sustainable rejuvenation of electrochromic WO3 films[J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28100-28104.
[28] CAI S, WEN H, WANG S, et al. Electrochromic polymers electrochemically polymerized from 2, 5–dithienylpyrrole (DTP) with different triarylamine units: Synthesis, characterization and optoelectrochemical properties[J]. Electrochimica Acta, 2017, 228: 332-342.
[29] LIU L, DU K, HE Z, et al. High-temperature adaptive and robust ultra-thin inorganic all-solid-state smart electrochromic energy storage devices[J]. Nano Energy, 2019, 62: 46-54.
[30] ZHANG L, WANG B, LI X, et al. Further understanding of the mechanisms of electrochromic devices with variable infrared emissivity based on polyaniline conducting polymers[J]. Journal of Materials Chemistry C, 2019, 7(32): 9878-9891.
[31] SHEN L, ZHENG J, XU C. Enhanced electrochromic switches and tunable green fluorescence based on terbium ion doped WO3 films[J]. Nanoscale, 2019, 11(47): 23049-23057.
[32] WANG Z, WANG X, CONG S, et al. Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry-perot nanocavities[J]. Nature Communications, 2020, 11(1): 1-9.
[33] GáZQUEZ M J, BOLIVAR J P, GARCIA-TENORIOGA R, et al. A review of the production cycle of titanium dioxide pigment[J]. Materials Sciences and Applications, 2014, 05(07):441-458
[34] SERPONE N, DONDI D, ALBINI A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products[J]. Inorganica Chimica Acta, 2007, 360(3): 794-802.
[35] YAMASHITA H, HARADA M, MISAKA J, et al. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2[J]. Catalysis Today, 2003, 84(3-4): 191-196.
[36] BARD A J. Design of semiconductor photoelectrochemical systems for solar energy conversion[J]. The Journal of Physical Chemistry, 1982, 86(2): 172-177.
[37] CHOI H C, AHN H-J, JUNG Y M, et al. Characterization of the structures of size-selected TiO 2 nanoparticles using X-ray absorption spectroscopy[J]. Applied Spectroscopy, 2004, 58(5): 598-602.
[38] XIAOBO C. Titanium dioxide nanomaterials and their energy applications[J]. Chinese Journal of Catalysis, 2009, 30(8): 839-851.
[39] SENNIK E, COLAK Z, KIHNC N, et al. Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4420-4427.
[40] JAROENWORALUCK A, PIJARN N, KOSACHAN N, et al. Nanocomposite TiO2–SiO2 gel for UV absorption[J]. Chemical Engineering Journal, 2012, 181: 45-55.
[41] MOR G K, VARGHESE O K, PAULOSE M, et al. Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements[J]. Thin Solid Films, 2006, 496(1): 42-48.
[42] CROMER D T, HERRINGTON K. The structures of anatase and rutile[J]. Journal of the American Chemical Society, 1955, 77(18): 4708-4709.
[43] LANDMANN M, RAULS E, SCHMIDT W. The electronic structure and optical response of rutile, anatase and brookite TiO2[J]. Journal of Physics: Condensed Matterials, 2012, 24(19): 195503.
[44] DYLLA A G, HENKELMAN G, STEVENSON K J. Lithium insertion in nanostructured TiO2 (B) architectures[J]. Accounts of Chemical Research, 2013, 46(5): 1104-1112.
[45] LI G, LI L, BOERIO-GOATES J, et al. High purity anatase TiO2 nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry[J]. Journal of the American Chemical Society, 2005, 127(24): 8659-8666.
[46] REYES-CORONADO D, RODRIGUEZ-GATTORNO G, ESPINOSA-PESQUEIRA M, et al. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile[J]. Nanotechnology, 2008, 19(14): 145605.
[47] MARCHAND R, BROHAN L, TOURNOUX M. TiO2 (B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17[J]. Materials Research Bulletin, 1980, 15(8): 1129-1133.
[48] THOMPSON T L, YATES J T. Surface science studies of the photoactivation of TiO2 new photochemical processes[J]. Chemical Reviews, 2006, 106(10): 4428-4453.
[49] DAHLMAN C J, HEO S, ZHANG Y, et al. Dynamics of lithium insertion in electrochromic titanium dioxide nanocrystal ensembles[J]. Journal of the American Chemical Society, 2021, 143(22): 8278-8294.
[50] JAIN N K, SAWANT M S, NIKAM S H, et al. Metal deposition: Plasma-based processes[J]. Encyclopedia of Plasma Technology, 2016: 722-740.
[51] LEVI M, AURBACH D. Distinction between energetic inhomogeneity and geometric non-uniformity of ion insertion electrodes based on complex impedance and complex capacitance analysis[J]. The Journal of Physical Chemistry B, 2005, 109(7): 2763-2773.
[52] LEE D-H, LEE B-H, SINHA A K, et al. Engineering titanium dioxide nanostructures for enhanced lithium-ion storage[J]. Journal of the American Chemical Society, 2018, 140(48): 16676-16684.
[53] ZHU K, WANG Q, KIM J-H, et al. Pseudocapacitive lithium-ion storage in oriented anatase TiO2 nanotube arrays[J]. The Journal of Physical Chemistry C, 2012, 116(22): 11895-11899.
[54] WANG J, POLLEUX J, LIM J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(40): 14925-14931.
[55] BISQUERT J. Physical electrochemistry of nanostructured devices[J]. Physical Chemistry Chemical Physics, 2008, 10(1): 49-72.
[56] HE T, WANG L, FABREGAT-SANTIAGO F, et al. Electron trapping induced electrostatic adsorption of cations: a general factor leading to photoactivity decay of nanostructured TiO2[J]. Journal of Materials Chemistry A, 2017, 5(14): 6455-6464.
[57] YUWONO J A, BURR P, GALVIN C, et al. Atomistic insights into lithium storage mechanisms in anatase, rutile, and amorphous TiO2 electrodes[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1791-1806.
[58] WAGEMAKER M, KEARLEY G J, VAN WELL A A, et al. Multiple Li positions inside oxygen octahedra in lithiated TiO2 anatase[J]. Journal of the American Chemical Society, 2003, 125(3): 840-848.
[59] LIU L, CHEN X. Titanium dioxide nanomaterials: Self-structural modifications[J]. Chemical Reviews, 2014, 114(19): 9890-9918.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TB34
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335968
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
黄思远. 非晶二氧化钛电致变色薄膜中的离子俘获与反俘获研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930236-黄思远-材料科学与工程(6145KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄思远]的文章
百度学术
百度学术中相似的文章
[黄思远]的文章
必应学术
必应学术中相似的文章
[黄思远]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。