中文版 | English
题名

老化微塑料对典型有机污染物人工合成雌激素和土霉素的吸附行为研究

其他题名
SORPTIONBEAHVIOROFAGEDMICROPLASTICS FORTYPICAL ORGANIC POLLUTANTS: SYNTHETIC ESTROGENAND OXYTETRACYCLINE
姓名
姓名拼音
XU Zonglin
学号
11930484
学位类型
硕士
学位专业
070302 分析化学
学科门类/专业学位类别
07 理学
导师
史江红
导师单位
环境科学与工程学院
论文答辩日期
2022-05-10
论文提交日期
2022-06-18
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  微塑料作为一种新兴污染物几乎存在于所有环境介质,对共存污染物有很强的吸附能力,可充当共存污染物的载体。此外,微塑料在环境中经历光氧化等老化过程,其理化特性发生显著改变,对共存污染物的吸附行为随之发生变化,可能会影响两者的复合生态毒性。因此,老化微塑料与共存污染物的相互作用已成为环境研究的热点。本文研究了水环境常检出的微塑料的老化特征,揭示了老化微塑料对典型有机污染物(人工合成雌激素EE2,和土霉素OTC)的吸附行为,采用模拟胃肠道的解吸实验研究了微塑料吸附的污染物的生物可利用性,并通过模型计算,评估了老化微塑料对海洋生物累积污染物的影响

  经过老化处理后,微塑料的表面粗糙度增大、疏水性降低、O/C比增大,结晶度发生改变。聚酰胺(PA)微塑料经过老化后降低了对疏水性有机污染物EE2吸附性能;而老化显著提升了聚乳酸(PLA)、聚氯乙烯(PVC)和聚苯乙烯(PS)微塑料对EE2的吸附能力。该吸附过程受水环境因子的影响(pH、盐度和富里酸),其中pH仅在>9的条件下显著抑制吸附;盐度促进了吸附过程;而富里酸在低浓度下促进吸附,高浓度抑制吸附。微塑料对EE2的吸附由物理吸附主导,其中PLAPVCPS吸附EE2的主要作用力是疏水相互作用,而PA吸附EE2的主要作用力则为氢键作用。

  老化也显著提高了PLAPVCPS微塑料对亲水性有机污染物OTC的吸附能力,但老化对PA微塑料吸附OTC的影响较小。原始和老化微塑料对OTC的吸附随pH的增大而先增大后减小;盐度对OTC的吸附无明显影响,仅在高浓度下产生抑制;富里酸对OTC的吸附影响较为复杂,既能促进吸附,也能抑制吸附。OTC在微塑料的吸附以多层、不均匀吸附为主,且吸附机制为氢键和静电相互作用主导的物理吸附。

  顺序解吸实验的结果表明老化降低了微塑料附着污染物的生物可利用性。单隔室生物累积模型分析表明,老化PA微塑料能显著降低海洋鱼类对EE2的累积,但对海鸟影响较小;老化PLA微塑料对鱼类和海鸟累积EE2的影响较小。在不考虑复合毒性效应和其他摄入途径的情况下,微塑料吸附的OTC对海洋鱼类造成的风险较小。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] Bergmann M, Wirzberger V, Krumpen T, et al. High quantities of microplastic in Arctic deepsea sediments from the hausgarten observatory [J]. Environmental science & technology, 2017,51(19): 11000-11010.
[2] Borrelle Stephanie B, Ringma J, Law Kara L, et al. Predicted growth in plastic waste exceedsefforts to mitigate plastic pollution [J]. Science, 2020, 369(6510): 1515-1518.
[3] Galloway T S, Cole M, Lewis C. Interactions of microplastic debris throughout the marineecosystem [J]. Nature Ecology and Evolution, 2017, 1(5):
[4] Blettler M C M, Abrial E, Khan F R, et al. Freshwater plastic pollution: Recognizing researchbiases and identifying knowledge gaps [J]. Water research, 2018, 143: 416-424.
[5] Lau W W Y, Shiran Y, Bailey R M, et al. Evaluating scenarios toward zero plastic pollution [J].Science, 2020, 369(6510): 1455-1461.
[6] Sadri S S, Thompson R C. On the quantity and composition of floating plastic debris enteringand leaving the Tamar Estuary, Southwest England [J]. Marine Pollution Bulletin, 2014, 81(1):55-60.
[7] Lahens L, Strady E, Kieu-Le T-C, et al. Macroplastic and microplastic contaminationassessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity[J]. Environmental Pollution, 2018, 236: 661-671.
[8] Jiang Y, Yang F, Hassan Kazmi S S U, et al. A review of microplastic pollution in seawater,sediments and organisms of the Chinese coastal and marginal seas [J]. Chemosphere, 2022,286: 131677.
[9] Akdogan Z, Guven B. Microplastics in the environment: A critical review of currentunderstanding and identification of future research needs [J]. Environmental Pollution, 2019,254: 113011.
[10] Edo C, González-Pleiter M, Leganés F, et al. Fate of microplastics in wastewater treatmentplants and their environmental dispersion with effluent and sludge [J]. Environmental Pollution,2020, 259: 113837.
[11] Dris R, Gasperi J, Saad M, et al. Synthetic fibers in atmospheric fallout: a source ofmicroplastics in the environment? [J]. Marine pollution bulletin, 2016, 104(1-2): 290-293.
[12] Kole P J, Löhr A J, Van Belleghem F G A J, et al. Wear and tear of tyres: a stealthy source ofmicroplastics in the environment [J]. International journal of environmental research andpublic health, 2017, 14(10): 1265.
[13] Atugoda T, Vithanage M, Wijesekara H, et al. Interactions between microplastics,pharmaceuticals and personal care products: Implications for vector transport [J]. EnvironmentInternational, 2021, 149: 106367.
[14] Sharifinia M, Bahmanbeigloo Z A, Keshavarzifard M, et al. Microplastic pollution as a grandchallenge in marine research: a closer look at their adverse impacts on the immune and reproductive systems [J]. Ecotoxicology and Environmental Safety, 2020, 204: 111109.
[15] Browne M A, Underwood A J, Chapman M G, et al. Linking effects of anthropogenic debristo ecological impacts [J]. Proceedings of the Royal Society B: Biological Sciences, 2015,282(1807): 20142929.
[16] Cole M, Lindeque P, Fileman E, et al. The Impact of Polystyrene Microplastics on Feeding,Function and Fecundity in the Marine Copepod Calanus helgolandicus [J]. EnvironmentalScience & Technology, 2015, 49(2): 1130-1137.
[17] Brandts I, Teles M, Goncalves A P, et al. Effects of nanoplastics on Mytilus galloprovincialisafter individual and combined exposure with carbamazepine [J]. Science of the TotalEnvironment, 2018, 643: 775-784.
[18] Rochman C M, Brookson C, Bikker J, et al. Rethinking microplastics as a diverse contaminantsuite [J]. Environmental toxicology and chemistry, 2019, 38(4): 703-711.
[19] Gunaalan K, Fabbri E, Capolupo M. The hidden threat of plastic leachates: a critical review ontheir impacts on aquatic organisms [J]. Water Research, 2020: 116170.
[20] Wang X, Zhu Q, Yan X, et al. A review of organophosphate flame retardants and plasticizersin the environment: Analysis, occurrence and risk assessment [J]. Science of The TotalEnvironment, 2020, 731: 139071.
[21] Balbi T, Franzellitti S, Fabbri R, et al. Impact of bisphenol A (BPA) on early embryodevelopment in the marine mussel Mytilus galloprovincialis: Effects on gene transcription [J].Environmental Pollution, 2016, 218: 996-1004.
[22] Bollmann U E, Möller A, Xie Z, et al. Occurrence and fate of organophosphorus flameretardants and plasticizers in coastal and marine surface waters [J]. Water Research, 2012,46(2): 531-538.
[23] Jeong J, Choi J. Development of AOP relevant to microplastics based on toxicity mechanismsof chemical additives using ToxCast™ and deep learning models combined approach [J].Environment International, 2020, 137:
[24] Rainieri S, Conlledo N, Larsen B K, et al. Combined effects of microplastics and chemicalcontaminants on the organ toxicity of zebrafish (Danio rerio) [J]. Environmental Research,2018, 162: 135-143.
[25] Beiras R, Tato T. Microplastics do not increase toxicity of a hydrophobic organic chemical tomarine plankton [J]. Marine Pollution Bulletin, 2019, 138: 58-62.
[26] Li Y, Wang J, Yang G, et al. Low level of polystyrene microplastics decreases earlydevelopmental toxicity of phenanthrene on marine medaka (Oryzias melastigma) [J]. Journalof Hazardous Materials, 2020, 385:
[27] Scopetani C, Cincinelli A, Martellini T, et al. Ingested microplastic as a two-way transporterfor PBDEs in Talitrus saltator [J]. Environmental Research, 2018, 167: 411-417.
[28] Koelmans A A, Bakir A, Burton G A, et al. Microplastic as a vector for chemicals in the aquaticenvironment: critical review and model-supported reinterpretation of empirical studies [J].Environmental science & technology, 2016, 50(7): 3315-3326.
[29] Thompson K W. Ethinyl estradiol [J]. The Journal of Clinical Endocrinology, 1948, 8(12):1088-1098.
[30] Okada H, Amatsu M, Ishihara S, et al. Conversion of some synthetic progestins to oestrogen[J]. European Journal of Endocrinology, 1964, 46(1): 31-36.
[31] 任海燕, 纪树兰, 刘志培, et al. 17α -乙炔基雌二醇降解菌的分离鉴定及降解特性 [J].环境科学, 2006, 27(6): 1186-1190.
[32] Maggs J L, Grimmer S F M, Orme M L E, et al. The biliary and urinary metabolites of
[3H]17α-ethynylestradiol in women [J]. Xenobiotica, 1983, 13(7): 421-431.
[33] Desbrow C, Routledge E J, Brighty G C, et al. Identification of Estrogenic Chemicals in STWEffluent. 1. Chemical Fractionation and in Vitro Biological Screening [J]. EnvironmentalScience & Technology, 1998, 32(11): 1549-1558.
[34] Routledge E J, Sheahan D, Desbrow C, et al. Identification of estrogenic chemicals in STWeffluent. 2. In vivo responses in trout and roach [J]. Environmental Science & Technology,1998, 32(11): 1559-1565.
[35] Ternes T A, Stumpf M, Mueller J, et al. Behavior and occurrence of estrogens in municipalsewage treatment plants—I. Investigations in Germany, Canada and Brazil [J]. Science of thetotal environment, 1999, 225(1-2): 81-90.
[36] Vader J S, Van Ginkel C G, Sperling F, et al. Degradation of ethinyl estradiol by nitrifyingactivated sludge [J]. Chemosphere, 2000, 41(8): 1239-1243.
[37] Shi J, Nishikawa M, Fujisawa S, et al. Estrogenic activity removal of ethynylestradiol bynitrifying activated sludge and microorganisms involved in its degradation [J]. EnvironmentalSciences: an International Journal of Environmental Physiology and Toxicology, 2007, 14(2):55-66.
[38]史江红. 雌激素在污水处理系统中浓度分布及其去除效果研究进展 [J]. 给水排水, 2013,39(7): 1-3.
[39] Yang X, Flowers R C, Weinberg H S, et al. Occurrence and removal of pharmaceuticals andpersonal care products (PPCPs) in an advanced wastewater reclamation plant [J]. Waterresearch, 2011, 45(16): 5218-5228.
[40] Guo W, Li J, Luo M, et al. Estrogenic activity and ecological risk of steroids, bisphenol A andphthalates after secondary and tertiary sewage treatment processes [J]. Water Research, 2022,214: 118189.
[41] Saeed T, Al-Jandal N, Abusam A, et al. Sources and levels of endocrine disrupting compounds(EDCs) in Kuwait's coastal areas [J]. Marine Pollution Bulletin, 2017, 118(1): 407-412.
[42] Li J, Jiang L, Liu X, et al. Adsorption and aerobic biodegradation of four selected endocrinedisrupting chemicals in soil–water system [J]. International Biodeterioration & Biodegradation,2013, 76: 3-7.
[43] Wise A, O’Brien K, Woodruff T. Are Oral Contraceptives a Significant Contributor to theEstrogenicity of Drinking Water? [J]. Environmental Science & Technology, 2011, 45(1): 51-60.
[29] Thompson K W. Ethinyl estradiol [J]. The Journal of Clinical Endocrinology, 1948, 8(12):1088-1098.
[30] Okada H, Amatsu M, Ishihara S, et al. Conversion of some synthetic progestins to oestrogen[J]. European Journal of Endocrinology, 1964, 46(1): 31-36.
[31] 任海燕, 纪树兰, 刘志培, et al. 17α -乙炔基雌二醇降解菌的分离鉴定及降解特性 [J].环境科学, 2006, 27(6): 1186-1190.
[32] Maggs J L, Grimmer S F M, Orme M L E, et al. The biliary and urinary metabolites of
[3H]17α-ethynylestradiol in women [J]. Xenobiotica, 1983, 13(7): 421-431.
[33] Desbrow C, Routledge E J, Brighty G C, et al. Identification of Estrogenic Chemicals in STWEffluent. 1. Chemical Fractionation and in Vitro Biological Screening [J]. EnvironmentalScience & Technology, 1998, 32(11): 1549-1558.
[34] Routledge E J, Sheahan D, Desbrow C, et al. Identification of estrogenic chemicals in STWeffluent. 2. In vivo responses in trout and roach [J]. Environmental Science & Technology,1998, 32(11): 1559-1565.
[35] Ternes T A, Stumpf M, Mueller J, et al. Behavior and occurrence of estrogens in municipalsewage treatment plants—I. Investigations in Germany, Canada and Brazil [J]. Science of thetotal environment, 1999, 225(1-2): 81-90.
[36] Vader J S, Van Ginkel C G, Sperling F, et al. Degradation of ethinyl estradiol by nitrifyingactivated sludge [J]. Chemosphere, 2000, 41(8): 1239-1243.
[37] Shi J, Nishikawa M, Fujisawa S, et al. Estrogenic activity removal of ethynylestradiol bynitrifying activated sludge and microorganisms involved in its degradation [J]. EnvironmentalSciences: an International Journal of Environmental Physiology and Toxicology, 2007, 14(2):55-66.
[38]史江红. 雌激素在污水处理系统中浓度分布及其去除效果研究进展 [J]. 给水排水, 2013,39(7): 1-3.
[39] Yang X, Flowers R C, Weinberg H S, et al. Occurrence and removal of pharmaceuticals andpersonal care products (PPCPs) in an advanced wastewater reclamation plant [J]. Waterresearch, 2011, 45(16): 5218-5228.
[40] Guo W, Li J, Luo M, et al. Estrogenic activity and ecological risk of steroids, bisphenol A andphthalates after secondary and tertiary sewage treatment processes [J]. Water Research, 2022,214: 118189.
[41] Saeed T, Al-Jandal N, Abusam A, et al. Sources and levels of endocrine disrupting compounds(EDCs) in Kuwait's coastal areas [J]. Marine Pollution Bulletin, 2017, 118(1): 407-412.
[42] Li J, Jiang L, Liu X, et al. Adsorption and aerobic biodegradation of four selected endocrinedisrupting chemicals in soil–water system [J]. International Biodeterioration & Biodegradation,2013, 76: 3-7.
[43] Wise A, O’Brien K, Woodruff T. Are Oral Contraceptives a Significant Contributor to theEstrogenicity of Drinking Water? [J]. Environmental Science & Technology, 2011, 45(1): 51-60.
[44] Zhang H, Shi J, Liu X, et al. Occurrence and removal of free estrogens, conjugated estrogens,and bisphenol A in manure treatment facilities in East China [J]. Water Research, 2014, 58:248-257.
[45] Tang X, Naveedullah, Hashmi M Z, et al. A Preliminary Study on the Occurrence andDissipation of Estrogen in Livestock Wastewater [J]. Bulletin of Environmental Contaminationand Toxicology, 2013, 90(4): 391-396.
[46] Barel-Cohen K, Shore L S, Shemesh M, et al. Monitoring of natural and synthetic hormonesin a polluted river [J]. Journal of Environmental Management, 2006, 78(1): 16-23.
[47] Ismail N A H, Wee S Y, Kamarulzaman N H, et al. Quantification of multi-classes of endocrinedisrupting compounds in estuarine water [J]. Environmental Pollution, 2019, 249: 1019-1028.
[48] Du B, Fan G, Yu W, et al. Occurrence and risk assessment of steroid estrogens in environmentalwater samples: A five-year worldwide perspective [J]. Environmental Pollution, 2020: 115405.
[49] Kase R, Javurkova B, Simon E, et al. Screening and risk management solutions for steroidalestrogens in surface and wastewater [J]. TrAC Trends in Analytical Chemistry, 2018, 102: 343-358.
[50] Caldwell D J, Mastrocco F, Anderson P D, et al. Predicted-no-effect concentrations for thesteroid estrogens estrone, 17β-estradiol, estriol, and 17α-ethinylestradiol [J]. EnvironmentalToxicology and Chemistry, 2012, 31(6): 1396-1406.
[51] Kase R, Javurkova B, Simon E, et al. Screening and risk management solutions for steroidalestrogens in surface and wastewater [J]. TrAC Trends in Analytical Chemistry, 2018, 102: 343-358.
[52] Hu Y, Yan X, Shen Y, et al. Occurrence, behavior and risk assessment of estrogens in surfacewater and sediments from Hanjiang River, Central China [J]. Ecotoxicology, 2019, 28(2): 143-153.
[53] Caldwell D J, Hutchinson T H, Heijerick D, et al. Derivation of an Aquatic Predicted No-EffectConcentration for the Synthetic Hormone, 17α-Ethinyl Estradiol [J]. Environmental Science &Technology, 2008, 42(19): 7046-7054.
[54] Ashfaq M, Sun Q, Ma C, et al. Occurrence, seasonal variation and risk evaluation of selectedendocrine disrupting compounds and their transformation products in Jiulong river and estuary,China [J]. Marine Pollution Bulletin, 2019, 145: 370-376.
[55] Sun J, Wang J, Zhang R, et al. Comparison of different advanced treatment processes inremoving endocrine disruption effects from municipal wastewater secondary effluent [J].Chemosphere, 2017, 168: 1-9.
[56] Cao J, Shi J, Han R, et al. Seasonal variations in the occurrence and distribution of estrogensand pharmaceuticals in the Zhangweinanyun River System [J]. Chinese science bulletin, 2010,55(27): 3138-3144.
[57] Luo Z, Tu Y, Li H, et al. Endocrine-disrupting compounds in the Xiangjiang River of China:Spatio-temporal distribution, source apportionment, and risk assessment [J]. Ecotoxicologyand Environmental Safety, 2019, 167: 476-484.
[58] Huang B, Wang B, Ren D, et al. Occurrence, removal and bioaccumulation of steroid estrogensin Dianchi Lake catchment, China [J]. Environment International, 2013, 59: 262-273.
[59] Yang Y, Cao X, Zhang M, et al. Occurrence and distribution of endocrine-disruptingcompounds in the Honghu Lake and East Dongting Lake along the Central Yangtze River,China [J]. Environmental Science and Pollution Research, 2015, 22(22): 17644-17652.
[60] Xie Z, Lu G, Yan Z, et al. Bioaccumulation and trophic transfer of pharmaceuticals in foodwebs from a large freshwater lake [J]. Environmental Pollution, 2017, 222: 356-366.
[61] Ismanto A, Hadibarata T, Kristanti R A, et al. The abundance of endocrine-disrupting chemicals(EDCs) in downstream of the Bengawan Solo and Brantas rivers located in Indonesia [J].Chemosphere, 2022, 297: 134151.
[62] Rocha M J, Cruzeiro C, Ferreira C, et al. Occurrence of endocrine disruptor compounds in theestuary of the Iberian Douro River and nearby Porto Coast (NW Portugal) [J]. Toxicological &Environmental Chemistry, 2012, 94(2): 252-261.
[63] Gorga M, Insa S, Petrovic M, et al. Occurrence and spatial distribution of EDCs and relatedcompounds in waters and sediments of Iberian rivers [J]. Science of the Total Environment,2015, 503: 69-86.
[64] Xu Y, Xu N, Llewellyn N R, et al. Occurrence and removal of free and conjugated estrogensin wastewater and sludge in five sewage treatment plants [J]. Environmental Science: Processes& Impacts, 2014, 16(2): 262-270.
[65] Can Z S, Fırlak M, Kerç A, et al. Evaluation of different wastewater treatment techniques inthree WWTPs in Istanbul for the removal of selected EDCs in liquid phase [J]. Environmentalmonitoring and assessment, 2014, 186(1): 525-539.
[66] Ying G-G, Kookana R S, Kumar A, et al. Occurrence and implications of estrogens andxenoestrogens in sewage effluents and receiving waters from South East Queensland [J].Science of the Total Environment, 2009, 407(18): 5147-5155.
[67] Liu Y, Tam N F Y, Guan Y, et al. Influence of a Marine Diatom on the Embryonic Toxicity of17α-Ethynylestradiol to the Abalone Haliotis diversicolor supertexta [J]. Water, Air, & SoilPollution, 2012, 223(7): 4383-4395.
[68] Aydin E, Talinli I. Analysis, occurrence and fate of commonly used pharmaceuticals andhormones in the Buyukcekmece Watershed, Turkey [J]. Chemosphere, 2013, 90(6): 2004-2012.
[69] Hallgren P, Sorita Z, Berglund O, et al. Effects of 17α-ethinylestradiol on individual life-historyparameters and estimated population growth rates of the freshwater gastropods Radix balthicaand Bithynia tentaculata [J]. Ecotoxicology, 2012, 21(3): 803-810.
[70] Rehberger K, Wernicke von Siebenthal E, Bailey C, et al. Long-term exposure to low 17α-ethinylestradiol (EE2) concentrations disrupts both the reproductive and the immune systemof juvenile rainbow trout, Oncorhynchus mykiss [J]. Environment International, 2020, 142:105836.
[71] Andersson C, Katsiadaki I, Lundstedt-Enkel K, et al. Effects of 17α-ethynylestradiol on ERODactivity, spiggin and vitellogenin in three-spined stickleback (Gasterosteus aculeatus) [J].Aquatic Toxicology, 2007, 83(1): 33-42.
[72] Yan Z, Lu G, Liu J, et al. An integrated assessment of estrogenic contamination andfeminization risk in fish in Taihu Lake, China [J]. Ecotoxicology and Environmental Safety,2012, 84: 334-340.
[73] Hoffmann J L, Torontali S P, Thomason R G, et al. Hepatic gene expression profiling usingGenechips in zebrafish exposed to 17α-ethynylestradiol [J]. Aquatic Toxicology, 2006, 79(3):233-246.
[74] Hirakawa I, Miyagawa S, Katsu Y, et al. Gene expression profiles in the testis associated withtestis–ova in adult Japanese medaka (Oryzias latipes) exposed to 17α-ethinylestradiol [J].Chemosphere, 2012, 87(7): 668-674.
[75] Saaristo M, Johnstone C P, Xu K, et al. The endocrine disruptor, 17α-ethinyl estradiol, altersmale mate choice in a freshwater fish [J]. Aquatic Toxicology, 2019, 208: 118-125.
[76] Vosges M, Braguer J-C, Combarnous Y. Long-term exposure of male rats to low-doseethinylestradiol (EE2) in drinking water: Effects on ponderal growth and on litter size of theirprogeny [J]. Reproductive Toxicology, 2008, 25(2): 161-168.
[77] Pillon D, Cadiou V, Angulo L, et al. Maternal exposure to 17-alpha-ethinylestradiol altersembryonic development of GnRH-1 neurons in mouse [J]. Brain Research, 2012, 1433: 29-37.
[78] Feinman S E, Matheson J C. Draft environmental impact statement: subtherapeuticantibacterial agents in animal feeds [M]. [Department of Health, Education, and Welfare,Public Health Service], Food and Drug Administration, Bureau of Veterinary Medicine, 1978.
[79] Klein E Y, Van Boeckel T P, Martinez E M, et al. Global increase and geographic convergencein antibiotic consumption between 2000 and 2015 [J]. Proceedings of the National Academyof Sciences, 2018, 115(15): E3463-E3470.
[80] Alday-Sanz V, Corsin F, Irde E, et al. Survey on the use of veterinary medicines in aquaculture[J]. Improving biosecurity through prudent and responsible use of veterinary medicines inaquatic food production, 2012, 547: 29-44.
[81] Eliopoulos G M, Eliopoulos G M, Roberts M C. Tetracycline therapy: update [J]. Clinicalinfectious diseases, 2003, 36(4): 462-467.
[82] Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposurepathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J].Chemosphere, 2006, 65(5): 725-759.
[83] Zhao L, Dong Y H, Wang H. Residues of veterinary antibiotics in manures from feedlotlivestock in eight provinces of China [J]. Science of The Total Environment, 2010, 408(5):1069-1075.
[84] Zhi S, Shen S, Zhou J, et al. Systematic analysis of occurrence, density and ecological risks of45 veterinary antibiotics: Focused on family livestock farms in Erhai Lake basin, Yunnan,China [J]. Environmental Pollution, 2020, 267: 115539.
[85] Sapkota A, Sapkota A R, Kucharski M, et al. Aquaculture practices and potential human healthrisks: current knowledge and future priorities [J]. Environment international, 2008, 34(8):1215-1226.
[86] Monteiro S H, Francisco J G, Andrade G C R M, et al. Study of spatial and temporal distributionof antimicrobial in water and sediments from caging fish farms by on-line SPE-LC-MS/MS[J]. Journal of Environmental Science and Health, Part B, 2016, 51(9): 634-643.
[87] Wu J, Su Y, Deng Y, et al. Spatial and temporal variation of antibiotic resistance in marine fishcage-culture area of Guangdong, China [J]. Environmental Pollution, 2019, 246: 463-471.
[88] Li S, Shi W, Liu W, et al. A duodecennial national synthesis of antibiotics in China's majorrivers and seas (2005–2016) [J]. Science of The Total Environment, 2018, 615: 906-917.
[89] Danner M-C, Robertson A, Behrends V, et al. Antibiotic pollution in surface fresh waters:Occurrence and effects [J]. Science of The Total Environment, 2019, 664: 793-804.
[90] Wang Z, Chen Q, Zhang J, et al. Characterization and source identification of tetracyclineantibiotics in the drinking water sources of the lower Yangtze River [J]. Journal ofEnvironmental Management, 2019, 244: 13-22.
[91]Luo Y, Xu L, Rysz M, et al. Occurrence and Transport of Tetracycline, Sulfonamide, Quinolone,and Macrolide Antibiotics in the Haihe River Basin, China [J]. Environmental Science &Technology, 2011, 45(5): 1827-1833.
[92] Li S, Shi W, Li H, et al. Antibiotics in water and sediments of rivers and coastal area of ZhuhaiCity, Pearl River estuary, south China [J]. Science of The Total Environment, 2018, 636: 1009-1019.
[93] Jiang L, Hu X, Yin D, et al. Occurrence, distribution and seasonal variation of antibiotics inthe Huangpu River, Shanghai, China [J]. Chemosphere, 2011, 82(6): 822-828.
[94] Cheng D, Liu X, Wang L, et al. Seasonal variation and sediment–water exchange of antibioticsin a shallower large lake in North China [J]. Science of The Total Environment, 2014, 476-477:266-275.
[95] Wang Z, Du Y, Yang C, et al. Occurrence and ecological hazard assessment of selectedantibiotics in the surface waters in and around Lake Honghu, China [J]. Science of The TotalEnvironment, 2017, 609: 1423-1432.
[96] Xu J, Zhang Y, Zhou C, et al. Distribution, sources and composition of antibiotics in sediment,overlying water and pore water from Taihu Lake, China [J]. Science of the Total Environment,2014, 497: 267-273.
[97] Tang J, Chen H Y, Shi T Z, et al. Occurrence of quinolones and tetracyclines antibiotics in theaquatic environment of Chaohu Lake [J]. Journal of Anhui Agricultural University, 2013, 40(6):1043-1048.
[98] Zhang B, Xu L, Hu Q, et al. Occurrence, spatiotemporal distribution and potential ecologicalrisks of antibiotics in Dongting Lake, China [J]. Environmental Monitoring and Assessment,2020, 192(12): 804.
[99] Ding H, Wu Y, Zhang W, et al. Occurrence, distribution, and risk assessment of antibiotics inthe surface water of Poyang Lake, the largest freshwater lake in China [J]. Chemosphere, 2017,184: 137-147.
[100]Han Q F, Zhao S, Zhang X R, et al. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China [J].Environment International, 2020, 138: 105551.
[101]Yuan J, Ni M, Liu M, et al. Occurrence of antibiotics and antibiotic resistance genes in a typicalestuary aquaculture region of Hangzhou Bay, China [J]. Marine pollution bulletin, 2019, 138:376-384.
[102]Xu K, Wang J, Gong H, et al. Occurrence of antibiotics and their associations with antibioticresistance genes and bacterial communities in Guangdong coastal areas [J]. Ecotoxicology andEnvironmental Safety, 2019, 186: 109796.
[103]Chen H, Liu S, Xu X-R, et al. Antibiotics in the coastal environment of the Hailing Bay region,South China Sea: Spatial distribution, source analysis and ecological risks [J]. Marine PollutionBulletin, 2015, 95(1): 365-373.
[104]Han Q F, Song C, Sun X, et al. Spatiotemporal distribution, source apportionment andcombined pollution of antibiotics in natural waters adjacent to mariculture areas in the LaizhouBay, Bohai Sea [J]. Chemosphere, 2021, 279: 130381.
[105]Chen F, Ying G-G, Kong L-X, et al. Distribution and accumulation of endocrine-disruptingchemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China [J]. EnvironmentalPollution, 2011, 159(6): 1490-1498.
[106]Ma N, Tong L, Li Y, et al. Distribution of antibiotics in lake water-groundwater - sedimentsystem in Chenhu Lake area [J]. Environmental Research, 2022, 204: 112343.
[107]Ma Y, Li M, Wu M, et al. Occurrences and regional distributions of 20 antibiotics in waterbodies during groundwater recharge [J]. Science of The Total Environment, 2015, 518-519:498-506.
[108]Zhou L, Limbu S M, Qiao F, et al. Influence of long-term feeding antibiotics on the gut healthof zebrafish [J]. Zebrafish, 2018, 15(4): 340-348.
[109]Guardiola F A, Cerezuela R, Meseguer J, et al. Modulation of the immune parameters andexpression of genes of gilthead seabream (Sparus aurata L.) by dietary administration ofoxytetracycline [J]. Aquaculture, 2012, 334: 51-57.
[110]Oliveira R, McDonough S, Ladewig J C L, et al. Effects of oxytetracycline and amoxicillin ondevelopment and biomarkers activities of zebrafish (Danio rerio) [J]. Environmentaltoxicology and pharmacology, 2013, 36(3): 903-912.
[111]Subirats J, Domingues A, Topp E. Does dietary consumption of antibiotics by humans promoteantibiotic resistance in the gut microbiome? [J]. Journal of Food Protection, 2019, 82(10):1636-1642.
[112]Fu L, Huang T, Wang S, et al. Toxicity of 13 different antibiotics towards freshwater greenalgae Pseudokirchneriella subcapitata and their modes of action [J]. Chemosphere, 2017, 168:217-222.
[113]Pengpeng W, Yaxue W, Hongyan S. Toxic Effects of Oxytetracycline on Scenedesmusobliquus [J]. Asian Journal of Ecotoxicology, 2020, (4): 215-223.
[114]Välitalo P, Kruglova A, Mikola A, et al. Toxicological impacts of antibiotics on aquatic microorganisms: a mini-review [J]. International Journal of Hygiene and Environmental Health,2017, 220(3): 558-569.
[115]Berman-Frank I, Lundgren P, Falkowski P. Nitrogen fixation and photosynthetic oxygenevolution in cyanobacteria [J]. Research in microbiology, 2003, 154(3): 157-164.
[116]Kolar B, Arnuš L, Jeretin B, et al. The toxic effect of oxytetracycline and trimethoprim in theaquatic environment [J]. Chemosphere, 2014, 115: 75-80.
[117]Zhou Z, Zhang Z, Feng L, et al. Adverse effects of levofloxacin and oxytetracycline on aquaticmicrobial communities [J]. Science of The Total Environment, 2020, 734: 139499.
[118]Klaver A L, Matthews R A. Effects of oxytetracycline on nitrification in a model aquaticsystem [J]. Aquaculture, 1994, 123(3-4): 237-247.
[119]Grenni P, Ancona V, Caracciolo A B. Ecological effects of antibiotics on natural ecosystems:A review [J]. Microchemical Journal, 2018, 136: 25-39.
[120]Martinez J L. Environmental pollution by antibiotics and by antibiotic resistance determinants[J]. Environmental pollution, 2009, 157(11): 2893-2902.
[121]Ashbolt Nicholas J, Amézquita A, Backhaus T, et al. Human Health Risk Assessment (HHRA)for Environmental Development and Transfer of Antibiotic Resistance [J]. EnvironmentalHealth Perspectives, 2013, 121(9): 993-1001.
[122]Amarasiri M, Sano D, Suzuki S. Understanding human health risks caused by antibioticresistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Currentknowledge and questions to be answered [J]. Critical Reviews in Environmental Science andTechnology, 2020, 50(19): 2016-2059.
[123]Wang Z, An C, Chen X, et al. Disposable masks release microplastics to the aqueousenvironment with exacerbation by natural weathering [J]. Journal of hazardous materials, 2021,417: 126036.
[124]Song Y K, Hong S H, Jang M, et al. Combined effects of UV exposure duration and mechanicalabrasion on microplastic fragmentation by polymer type [J]. Environmental science &technology, 2017, 51(8): 4368-4376.
[125]Crawford C B, Quinn B. Microplastic pollutants [M]. Elsevier Limited, 2016.
[126]Zhang K, Hamidian A H, Tubić A, et al. Understanding plastic degradation and microplasticformation in the environment: A review [J]. Environmental Pollution, 2021, 274: 116554.
[127]Gardette M, Perthue A, Gardette J-L, et al. Photo- and thermal-oxidation of polyethylene:Comparison of mechanisms and influence of unsaturation content [J]. Polymer Degradationand Stability, 2013, 98(11): 2383-2390.
[128]马思睿, 李舒行, 郭学涛. 微塑料的老化特性, 机制及其对污染物吸附影响的研究进展[J]. 中国环境科学, 2020, 40(9): 3992-4003.
[129]Pan Z, Sun X, Guo H, et al. Prevalence of microplastic pollution in the Northwestern PacificOcean [J]. Chemosphere, 2019, 225: 735-744.
[130]Pathak V M. Review on the current status of polymer degradation: a microbial approach [J].Bioresources and Bioprocessing, 2017, 4(1): 1-31.
[131]Santo M, Weitsman R, Sivan A. The role of the copper-binding enzyme–laccase–in thebiodegradation of polyethylene by the actinomycete Rhodococcus ruber [J]. InternationalBiodeterioration & Biodegradation, 2013, 84: 204-210.
[132]Nakamiya K, Sakasita G, Ooi T, et al. Enzymatic degradation of polystyrene by hydroquinoneperoxidase of Azotobacter beijerinckii HM121 [J]. Journal of fermentation and bioengineering,1997, 84(5): 480-482.
[133]Dawson A L, Kawaguchi S, King C K, et al. Turning microplastics into nanoplastics throughdigestive fragmentation by Antarctic krill [J]. Nature communications, 2018, 9(1): 1-8.
[134]Yuan J, Ma J, Sun Y, et al. Microbial degradation and other environmental aspects ofmicroplastics/plastics [J]. Science of the Total Environment, 2020, 715: 136968.
[135]Mateos-Cárdenas A, O’Halloran J, van Pelt F N A M, et al. Rapid fragmentation ofmicroplastics by the freshwater amphipod Gammarus duebeni (Lillj.) [J]. Scientific reports,2020, 10(1): 1-12.
[136]Liu P, Qian L, Wang H, et al. New insights into the aging behavior of microplastics acceleratedby advanced oxidation processes [J]. Environmental science & technology, 2019, 53(7): 3579-3588.
[137]Duan J, Bolan N, Li Y, et al. Weathering of microplastics and interaction with other coexistingconstituents in terrestrial and aquatic environments [J]. Water Research, 2021, 196: 117011.
[138]Sun Y, Yuan J, Zhou T, et al. Laboratory simulation of microplastics weathering and itsadsorption behaviors in an aqueous environment: a systematic review [J]. Environmentalpollution, 2020, 265: 114864.
[139]Mao R, Lang M, Yu X, et al. Aging mechanism of microplastics with UV irradiation and itseffects on the adsorption of heavy metals [J]. Journal of hazardous materials, 2020, 393:122515.
[140]Liu G, Zhu Z, Yang Y, et al. Sorption behavior and mechanism of hydrophilic organicchemicals to virgin and aged microplastics in freshwater and seawater [J]. EnvironmentalPollution, 2019, 246: 26-33.
[141]Chen Z, Xiao X, Chen B, et al. Quantification of chemical states, dissociation constants andcontents of oxygen-containing groups on the surface of biochars produced at differenttemperatures [J]. Environmental science & technology, 2015, 49(1): 309-317.
[142]Lv Y, Huang Y, Yang J, et al. Outdoor and accelerated laboratory weathering of polypropylene:A comparison and correlation study [J]. Polymer Degradation and Stability, 2015, 112: 145-159.
[143]Rouillon C, Bussiere P O, Desnoux E, et al. Is carbonyl index a quantitative probe to monitorpolypropylene photodegradation? [J]. Polymer degradation and stability, 2016, 128: 200-208.
[144]Liu P, Wu X, Peng J, et al. Critical effect of iron red pigment on photoaging behavior ofpolypropylene microplastics in artificial seawater [J]. Journal of Hazardous Materials, 2021,404: 124209.
[145]Rochman C M. The complex mixture, fate and toxicity of chemicals associated with plasticdebris in the marine environment [M]. Marine anthropogenic litter. Springer, Cham. 2015: 117-140.
[146]Rani M, Shim W J, Jang M, et al. Releasing of hexabromocyclododecanes from expandedpolystyrenes in seawater -field and laboratory experiments [J]. Chemosphere, 2017, 185: 798-805.
[147]Luo H, Xiang Y, Li Y, et al. Weathering alters surface characteristic of TiO2-pigmentedmicroplastics and particle size distribution of TiO2 released into water [J]. Science of the TotalEnvironment, 2020, 729: 139083.
[148]Zhang H, Wang J, Zhou B, et al. Enhanced adsorption of oxytetracycline to weatheredmicroplastic polystyrene: kinetics, isotherms and influencing factors [J]. EnvironmentalPollution, 2018, 243: 1550-1557.
[149]Wang Q, Zhang Y, Wangjin X, et al. The adsorption behavior of metals in aqueous solution bymicroplastics effected by UV radiation [J]. Journal of Environmental Sciences, 2020, 87: 272-280.
[150]Liu X, Xu J, Zhao Y, et al. Hydrophobic sorption behaviors of 17Β-Estradiol on environmentalmicroplastics [J]. Chemosphere, 2019, 226: 726-735.
[151]Fu D, Zhang Q, Fan Z, et al. Aged microplastics polyvinyl chloride interact with copper andcause oxidative stress towards microalgae Chlorella vulgaris [J]. Aquatic Toxicology, 2019,216: 105319.
[152]Della Torre C, Bergami E, Salvati A, et al. Accumulation and embryotoxicity of polystyrenenanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus [J].Environmental Science and Technology, 2014, 48(20): 12302-12311.
[153]Wang X, Zheng H, Zhao J, et al. Photodegradation Elevated the Toxicity of PolystyreneMicroplastics to Grouper (Epinephelus moara) through Disrupting Hepatic Lipid Homeostasis[J]. Environmental science & technology, 2020, 54(10): 6202-6212.
[154]Huang Y, Ding J, Zhang G, et al. Interactive effects of microplastics and selectedpharmaceuticals on red tilapia: Role of microplastic aging [J]. Science of the TotalEnvironment, 2021, 752: 142256.
[155]Dong W, Gijsman P. Influence of temperature on the thermo-oxidative degradation ofpolyamide 6 films [J]. Polymer degradation and stability, 2010, 95(6): 1054-1062.
[156]Zhou L, Wang T, Qu G, et al. Probing the aging processes and mechanisms of microplasticunder simulated multiple actions generated by discharge plasma [J]. Journal of HazardousMaterials, 2020, 398: 122956.
[157]Tham W L, Poh B T, Mohd Ishak Z A, et al. Water absorption kinetics and hygrothermal agingof poly (lactic acid) containing halloysite nanoclay and maleated rubber [J]. Journal ofPolymers and the Environment, 2015, 23(2): 242-250.
[158]Liu P, Wu X, Shi H, et al. Contribution of aged polystyrene microplastics to thebioaccumulation of pharmaceuticals in marine organisms using experimental and modelanalysis [J]. Chemosphere, 2022, 287: 132412.
[159]Herzke D, Anker-Nilssen T, Nøst T H, et al. Negligible Impact of Ingested Microplastics onTissue Concentrations of Persistent Organic Pollutants in Northern Fulmars off CoastalNorway [J]. Environmental Science & Technology, 2016, 50(4): 1924-1933.
[160]Lee H, Lee H-J, Kwon J-H. Estimating microplastic-bound intake of hydrophobic organicchemicals by fish using measured desorption rates to artificial gut fluid [J]. Science of TheTotal Environment, 2019, 651: 162-170.
[161]刘鹏. 微塑料的加速老化过程及其与药物和铁红颜料的相互作用研究[D]. 南京大学,2020.
[162]Zhang J, Zhang X, Zhou Y, et al. Occurrence, distribution and risk assessment of antibiotics atvarious aquaculture stages in typical aquaculture areas surrounding the Yellow Sea [J]. Journalof Environmental Sciences, 2022, In Press.
[163]Jiang Z, Huang L, Fan Y, et al. Contrasting effects of microplastic aging upon the adsorptionof sulfonamides and its mechanism [J]. Chemical Engineering Journal, 2022, 430: 132939.
[164]Liu X, Xu J, Zhao Y, et al. Hydrophobic sorption behaviors of 17β-Estradiol on environmentalmicroplastics [J]. Chemosphere, 2019, 226: 726-735.
[165]Liu P, Zhan X, Wu X, et al. Effect of weathering on environmental behavior of microplastics:Properties, sorption and potential risks [J]. Chemosphere, 2020, 242: 125193.
[166]Adeel M, Song X, Wang Y, et al. Environmental impact of estrogens on human, animal andplant life: a critical review [J]. Environment international, 2017, 99: 107-119.
[167]Aris A Z, Shamsuddin A S, Praveena S M. Occurrence of 17α-ethynylestradiol (EE2) in theenvironment and effect on exposed biota: a review [J]. Environment International, 2014, 69:104-119.
[168]Sun Y, Pignatello J J. Photochemical Reactions Involved in the Total Mineralization of 2,4-Dby Fe3+/H2O2/UV [J]. Environmental Science and Technology, 1993, 27(2): 304-310.
[169]Wang C, Xian Z, Jin X, et al. Photo-aging of polyvinyl chloride microplastic in the presenceof natural organic acids [J]. Water Research, 2020: 116082.
[170]Yan Y, Zhu F, Zhu C, et al. Dibutyl phthalate release from polyvinyl chloride microplastics:Influence of plastic properties and environmental factors [J]. Water Research, 2021, 204:117597.
[171]Feng Q, An C, Chen Z, et al. Investigation into the impact of aged microplastics on oil behaviorin shoreline environments [J]. Journal of Hazardous Materials, 2022, 421: 126711.
[172]Xu J, Zhang K, Wang L, et al. Strong but reversible sorption on polar microplastics enhancedearthworm bioaccumulation of associated organic compounds [J]. Journal of HazardousMaterials, 2022, 423: 127079.
[173]Li X, Zhao X, Ye L. Stress photo-oxidative aging behaviour of polyamide 6 [J]. PolymerInternational, 2012, 61(1): 118-123.
[174]Shamey R, Sinha K. A review of degradation of nylon 6. 6 as a result of exposure toenvironmental conditions [J]. Review of Progress in Coloration and Related Topics, 2003,33(1): 93-107.
[175]Yang M, Gao Y, Li H, et al. Functionalization of multiwalled carbon nanotubes with polyamide6 by anionic ring-opening polymerization [J]. Carbon, 2007, 45(12): 2327-2333.
[176]Brandon J, Goldstein M, Ohman M D. Long-term aging and degradation of microplasticparticles: comparing in situ oceanic and experimental weathering patterns [J]. Marine pollutionbulletin, 2016, 110(1): 299-308.
[177]Ramanathan T, Fisher F T, Ruoff R S, et al. Amino-Functionalized Carbon Nanotubes forBinding to Polymers and Biological Systems [J]. Chemistry of Materials, 2005, 17(6): 1290-1295.
[178]Gewert B, Plassmann M M, MacLeod M. Pathways for degradation of plastic polymersfloating in the marine environment [J]. Environmental science: processes & impacts, 2015,17(9): 1513-1521.
[179]Ouyang Z, Li S, Zhao M, et al. The aging behavior of polyvinyl chloride microplasticspromoted by UV-activated persulfate process [J]. Journal of Hazardous Materials, 2022, 424:127461.
[180]Wang H Y, Wang Y Z, Jiang Y F, et al. Synergistic aging effect of polyether polyurethanecoatings [J]. Asian J Chem, 2013, 25: 8561-8565.
[181]Han J, Qiu W, Cao Z, et al. Adsorption of ethinylestradiol (EE2) on polyamide 612: Molecularmodeling and effects of water chemistry [J]. Water research, 2013, 47(7): 2273-2284.
[182]Hu B, Li Y, Jiang L, et al. Influence of microplastics occurrence on the adsorption of 17β-estradiol in soil [J]. Journal of Hazardous Materials, 2020, 400: 123325.
[183]Senthilkumaar S, Varadarajan P R, Porkodi K, et al. Adsorption of methylene blue onto jutefiber carbon: kinetics and equilibrium studies [J]. Journal of colloid and interface science, 2005,284(1): 78-82.
[184]Ma J, Zhao J, Zhu Z, et al. Effect of microplastic size on the adsorption behavior andmechanism of triclosan on polyvinyl chloride [J]. Environmental Pollution, 2019, 254: 113104.
[185]Wu P, Cai Z, Jin H, et al. Adsorption mechanisms of five bisphenol analogues on PVCmicroplastics [J]. Science of the Total Environment, 2019, 650: 671-678.
[186]Fan X, Zou Y, Geng N, et al. Investigation on the adsorption and desorption behaviors ofantibiotics by degradable MPs with or without UV ageing process [J]. Journal of HazardousMaterials, 2021, 401: 123363.
[187]Luo H, Liu C, He D, et al. Environmental behaviors of microplastics in aquatic systems: Asystematic review on degradation, adsorption, toxicity and biofilm under aging conditions [J].Journal of Hazardous Materials, 2022, 423: 126915.
[188]Gong W, Jiang M, Han P, et al. Comparative analysis on the sorption kinetics and isothermsof fipronil on nondegradable and biodegradable microplastics [J]. Environmental Pollution,2019, 254: 112927.
[189]Guo X, Chen C, Wang J. Sorption of sulfamethoxazole onto six types of microplastics [J].Chemosphere, 2019, 228: 300-308.
[190]Wang F, Shih K M, Li X Y. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics [J]. Chemosphere, 2015, 119: 841-847.
[191]Tong X, Li Y, Zhang F, et al. Adsorption of 17β-estradiol onto humic-mineral complexes andeffects of temperature, pH, and bisphenol A on the adsorption process [J]. EnvironmentalPollution, 2019, 254: 112924.
[192]Martins A C, Pezoti O, Cazetta A L, et al. Removal of tetracycline by NaOH-activated carbonproduced from macadamia nut shells: kinetic and equilibrium studies [J]. ChemicalEngineering Journal, 2015, 260: 291-299.
[193]Gao P, Yang C, Liang Z, et al. N-propyl functionalized spherical mesoporous silica as a rapidand efficient adsorbent for steroid estrogen removal: Adsorption behaviour and effects of waterchemistry [J]. Chemosphere, 2019, 214: 361-370.
[194]刘学敏. 微塑料与典型环境内分泌干扰物的界面行为和作用机制研究[D]. 华东师范大学, 2020.
[195]Tang S, Lin L, Wang X, et al. Adsorption of fulvic acid onto polyamide 6 microplastics:Influencing factors, kinetics modeling, site energy distribution and interaction mechanisms [J].Chemosphere, 2021, 272: 129638.
[196]Lara L Z, Bertoldi C, Alves N M, et al. Sorption of endocrine disrupting compounds ontopolyamide microplastics under different environmental conditions: Behaviour and mechanism[J]. Science of The Total Environment, 2021, 796: 148983.
[197]Ding L, Luo Y, Yu X, et al. Insight into interactions of polystyrene microplastics with differenttypes and compositions of dissolved organic matter [J]. Science of The Total Environment,2022, 824: 153883.
[198]Shen X-C, Li D-C, Sima X-F, et al. The effects of environmental conditions on the enrichmentof antibiotics on microplastics in simulated natural water column [J]. Environmental research,2018, 166: 377-383.
[199]Clara M, Strenn B, Saracevic E, et al. Adsorption of bisphenol-A, 17β-estradiole and 17α-ethinylestradiole to sewage sludge [J]. Chemosphere, 2004, 56(9): 843-851.
[200]Liu X, Shi H, Xie B, et al. Microplastics as Both a Sink and a Source of Bisphenol A in theMarine Environment [J]. Environmental Science & Technology, 2019, 53(17): 10188-10196.
[201]Lončarski M, Gvoić V, Prica M, et al. Sorption behavior of polycyclic aromatic hydrocarbonson biodegradable polylactic acid and various nondegradable microplastics: Model fitting andmechanism analysis [J]. Science of The Total Environment, 2021, 785: 147289.
[202]Rodriguez-Mozaz S, Chamorro S, Marti E, et al. Occurrence of antibiotics and antibioticresistance genes in hospital and urban wastewaters and their impact on the receiving river [J].Water research, 2015, 69: 234-242.
[203]Largitte L, Pasquier R. A review of the kinetics adsorption models and their application to theadsorption of lead by an activated carbon [J]. Chemical Engineering Research and Design,2016, 109: 495-504.
[204]Xue X-D, Fang C-R, Zhuang H-F. Adsorption behaviors of the pristine and aged thermoplasticpolyurethane microplastics in Cu (II)-OTC coexisting system [J]. Journal of Hazardous Materials, 2021, 407: 124835.
[205]Sun Y, Wang X, Xia S, et al. New insights into oxytetracycline (OTC) adsorption behavior onpolylactic acid microplastics undergoing microbial adhesion and degradation [J]. ChemicalEngineering Journal, 2021, 416: 129085.
[206]Luo J, Li X, Ge C, et al. Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOHmodified biochar under single and ternary systems [J]. Bioresource Technology, 2018, 263:385-392.
[207]Minale M, Guadie A, Li Y, et al. Enhanced removal of oxytetracycline antibiotics from waterusing manganese dioxide impregnated hydrogel composite: Adsorption behavior and oxidativedegradation pathways [J]. Chemosphere, 2021, 280: 130926.
[208]Zhang X, Zheng M, Wang L, et al. Sorption of three synthetic musks by microplastics [J].Marine Pollution Bulletin, 2018, 126: 606-609.
[209]Pascall M A, Zabik M E, Zabik M J, et al. Uptake of polychlorinated biphenyls (PCBs) froman aqueous medium by polyethylene, polyvinyl chloride, and polystyrene films [J]. Journal ofagricultural and food chemistry, 2005, 53(1): 164-169.
[210]Xu B, Liu F, Brookes P C, et al. Microplastics play a minor role in tetracycline sorption in thepresence of dissolved organic matter [J]. Environmental Pollution, 2018, 240: 87-94.
[211]Llorca M, Schirinzi G, Martínez M, et al. Adsorption of perfluoroalkyl substances onmicroplastics under environmental conditions [J]. Environmental pollution, 2018, 235: 680-691.
[212]Liu Z, Qin Q, Hu Z, et al. Adsorption of chlorophenols on polyethylene terephthalatemicroplastics from aqueous environments: Kinetics, mechanisms and influencing factors [J].Environmental Pollution, 2020, 265: 114926.
[213]Zhang Y, Ni F, He J, et al. Mechanistic insight into different adsorption of norfloxacin onmicroplastics in simulated natural water and real surface water [J]. Environmental Pollution,2021, 284: 117537.
[214]Tubić A, Lončarski M, Apostolović T, et al. Adsorption mechanisms of chlorobenzenes andtrifluralin on primary polyethylene microplastics in the aquatic environment [J].Environmental Science and Pollution Research, 2021, 28(42): 59416-59429.
[215]Yu F, Li Y, Huang G, et al. Adsorption behavior of the antibiotic levofloxacin on microplasticsin the presence of different heavy metals in an aqueous solution [J]. Chemosphere, 2020, 260:127650.
[216]Xue X-D, Fang C-R, Zhuang H-F. Adsorption behaviors of the pristine and aged thermoplasticpolyurethane microplastics in Cu(II)-OTC coexisting system [J]. Journal of HazardousMaterials, 2021, 407: 124835.
[217]Wang Y, Wang X, Li Y, et al. Effects of exposure of polyethylene microplastics to air, waterand soil on their adsorption behaviors for copper and tetracycline [J]. Chemical EngineeringJournal, 2021, 404: 126412.
[218]刘迪, 童非, 高岩, et al. 重金属存在下微塑料对环丙沙星的吸附特征及机制研究 [J].2021: 1017-1025.
[219]Cole M, Galloway T S. Ingestion of nanoplastics and microplastics by Pacific oyster larvae[J]. Environmental science & technology, 2015, 49(24): 14625-14632.
[220]Brandts I, Teles M, Gonçalves A P, et al. Effects of nanoplastics on Mytilus galloprovincialisafter individual and combined exposure with carbamazepine [J]. Science of the totalenvironment, 2018, 643: 775-784.
[221]Brandts I, Teles M, Tvarijonaviciute A, et al. Effects of polymethylmethacrylate nanoplasticson Dicentrarchus labrax [J]. Genomics, 2018, 110(6): 435-441.
[222]Wang W, Ge J, Yu X. Bioavailability and toxicity of microplastics to fish species: a review [J].Ecotoxicology and environmental safety, 2020, 189: 109913.
[223]Wardrop P, Shimeta J, Nugegoda D, et al. Chemical pollutants sorbed to ingested microbeadsfrom personal care products accumulate in fish [J]. Environmental science & technology, 2016,50(7): 4037-4044.
[224]Mohamed Nor N H, Koelmans A A. Transfer of PCBs from microplastics under simulated gutfluid conditions is biphasic and reversible [J]. Environmental science & technology, 2019,53(4): 1874-1883.
[225]Bakir A, Rowland S J, Thompson R C. Enhanced desorption of persistent organic pollutantsfrom microplastics under simulated physiological conditions [J]. Environmental pollution,2014, 185: 16-23.
[226]Liu X, Gharasoo M, Shi Y, et al. Key physicochemical properties dictating gastrointestinalbioaccessibility of microplastics-associated organic xenobiotics: insights from a deep learningapproach [J]. Environmental Science & Technology, 2020, 54(19): 12051-12062.
[227]Liu P, Wu X, Liu H, et al. Desorption of pharmaceuticals from pristine and aged polystyrenemicroplastics under simulated gastrointestinal conditions [J]. Journal of hazardous materials,2020, 392: 122346.
[228]Duan Z, Cheng H, Duan X, et al. Diet preference of zebrafish (Danio rerio) for bio-basedpolylactic acid microplastics and induced intestinal damage and microbiota dysbiosis [J].Journal of Hazardous Materials, 2022, 429: 128332.
[229]Liu F-f, Liu G-z, Zhu Z-l, et al. Interactions between microplastics and phthalate esters asaffected by microplastics characteristics and solution chemistry [J]. Chemosphere, 2019, 214:688-694.
[230] Almeida A d S V, de Figueiredo Neves T, da Silva M G C, et al. Synthesis of a novelmagnetic composite based on graphene oxide, chitosan and organoclay and its application inthe removal of bisphenol A, 17α-ethinylestradiol and triclosan [J]. Journal of EnvironmentalChemical Engineering, 2022, 10(1): 107071.
[231]Chua E M, Shimeta J, Nugegoda D, et al. Assimilation of Polybrominated Diphenyl Ethersfrom Microplastics by the Marine Amphipod, Allorchestes Compressa [J]. EnvironmentalScience & Technology, 2014, 48(14): 8127-8134.
[232]Al-Ansari A M, Saleem A, Kimpe L E, et al. Bioaccumulation of the pharmaceutical 17α-ethinylestradiol in shorthead redhorse suckers (Moxostoma macrolepidotum) from the St. ClairRiver, Canada [J]. Environmental Pollution, 2010, 158(8): 2566-2571.
[233]Jabeen K, Su L, Li J, et al. Microplastics and mesoplastics in fish from coastal and fresh watersof China [J]. Environmental Pollution, 2017, 221: 141-149.
[234]Isobe A, Iwasaki S, Uchida K, et al. Abundance of non-conservative microplastics in the upperocean from 1957 to 2066 [J]. Nature communications, 2019, 10(1): 1-13.
[235]Boonsaner M, Hawker D W. Transfer of oxytetracycline from swine manure to three differentaquatic plants: Implications for human exposure [J]. Chemosphere, 2015, 122: 176-182.

所在学位评定分委会
化学系
国内图书分类号
X505
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335974
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
许宗林. 老化微塑料对典型有机污染物人工合成雌激素和土霉素的吸附行为研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930484-许宗林-环境科学与工程(6291KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[许宗林]的文章
百度学术
百度学术中相似的文章
[许宗林]的文章
必应学术
必应学术中相似的文章
[许宗林]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。