[1] BOES A D, PRASAD S, LIU H, et al. Network localization of neurological symptoms from focal brain lesions[J]. Brain, 2015, 138(10): 3061-3075.
[2] ABDO W F, VAN DE WARRENBURG B P, BURN D J, et al. The clinical approach to movement disorders[J]. Nature Reviews Neurology, 2010, 6(1): 29-37.
[3] SHAHED J, JANKOVIC J. Exploring the relationship between essential tremor and parkinson’s disease[J]. Parkinsonism & Related Disorders, 2007, 13(2): 67-76.
[4] DEUSCHL G, BAIN P, BRIN M, et al. Consensus statement of the movement disorder society on tremor[J]. Movement Disorders, 1998, 13(S3): 2-23.
[5] ON RATING SCALES FOR PARKINSON’S DISEASE M D S T F. The unified parkinson’s disease rating scale (updrs): status and recommendations[J]. Movement Disorders, 2003, 18(7): 738-750.
[6] ELBLE R J. The essential tremor rating assessment scale[J]. Journal of Neurology & Neuromedicine, 2016, 1(4).
[7] SMAGA S. Tremor[J]. American Family Physician, 2003, 68(8): 1545-1552.
[8] NISTICÒ R, QUATTRONE A, CRASÀ M, et al. Evaluation of rest tremor in different positions in parkinson’ s disease and essential tremor plus[J]. Neurological Sciences, 2022: 1-7.
[9] LIN C H, WU J X, HSU J C, et al. Tremor class scaling for parkinson disease patients using an array x-band microwave doppler-based upper limb movement quantizer[J]. IEEE Sensors Journal, 2021, 21(19): 21473-21485.
[10] HAUBENBERGER D, ABBRUZZESE G, BAIN P G, et al. Transducer-based evaluation of tremor[J]. Movement Disorders, 2016, 31(9): 1327-1336.
[11] MUSAB R, AS’ ARRY A, REZALI K A M, et al. Tremor quantification and its measurements using shimmer[C]//Journal of Physics: Conference Series: volume 1262. IOP Publishing, 2019:012024.
[12] DAI H, ZHANG P, LUETH T C. Quantitative assessment of parkinsonian tremor based on an inertial measurement unit[J]. Sensors, 2015, 15(10): 25055-25071.
[13] BHAVANA C, GOPAL J, RAGHAVENDRA P, et al. Techniques of measurement for parkinson’s tremor highlighting advantages of embedded imu over emg[C]//2016 International Conference on Recent Trends in Information Technology (ICRTIT). IEEE, 2016: 1-5.
[14] MICHOUD B, GUILLOU E, BRICENO H, et al. Real-time marker-free motion capture from multiple cameras[C]//2007 IEEE 11th International Conference on Computer Vision. IEEE,2007: 1-7.
[15] HAYASHIDA T, ZIN T T, SAKAI K, et al. Evaluation of the severity of tremor based on each signal acquired from the displacement of the hand movements[C]//2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). IEEE, 2021: 760-761.
[16] TREMBLAY S, ROGASCH N C, PREMOLI I, et al. Clinical utility and prospective of tms–eeg [J]. Clinical Neurophysiology, 2019, 130(5): 802-844.
[17] LEFAUCHEUR J P, ALEMAN A, BAEKEN C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rtms): an update (2014–2018)[J]. Clinical Neurophysiology, 2020, 131(2): 474-528.
[18] LIOUMIS P, KIČIĆ D, SAVOLAINEN P, et al. Reproducibility of tms—evoked eeg responses [J]. Human Brain Mapping, 2009, 30(4): 1387-1396.
[19] ROGASCH N C, SULLIVAN C, THOMSON R H, et al. Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: A review and introduction to the opensource tesa software[J]. Neuroimage, 2017, 147: 934-951.
[20] DELORME A, MAKEIG S. Eeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysis[J]. Journal of Neuroscience Methods, 2004, 134(1): 9-21.
[21] 胡理. 脑电信号处理与特征提取[M]. 北京: 科学出版社, 2020: 3-5.
[22] MEINEL H H. Automotive millimeterwave radar history and present status[C]//1998 28th European Microwave Conference: volume 1. IEEE, 1998: 619-629.
[23] NANZER J A, ROGERS R L. Human presence detection using millimeter-wave radiometry [J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(12): 2727-2733.
[24] PETKIE D T, BENTON C, BRYAN E. Millimeter wave radar for remote measurement of vital signs[C]//2009 IEEE Radar Conference. IEEE, 2009: 1-3.
[25] LIEN J, GILLIAN N, KARAGOZLER M E, et al. Soli: Ubiquitous gesture sensing with millimeter wave radar[J]. ACM Transactions on Graphics (TOG), 2016, 35(4): 1-19.
[26] BHATIA K P, BAIN P, BAJAJ N, et al. Consensus statement on the classification of tremors. from the task force on tremor of the international parkinson and movement disorder society[J]. Movement Disorders, 2018, 33(1): 75-87.
[27] BOUDRAA A, CEXUS J, SAIDI Z. Emd-based signal noise reduction[J]. International Journal of Signal Processing, 2004, 1(1): 33-37.
[28] BOUDRAA A O, CEXUS J C. Emd-based signal filtering[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(6): 2196-2202.
[29] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 1998, 454(1971): 903-995.
[30] MARTINEZ MANZANERA O, ELTING J W, VAN DER HOEVEN J H, et al. Tremor detection using parametric and non-parametric spectral estimation methods: A comparison with clinical assessment[J]. PloS One, 2016, 11(6): e0156822.
[31] ZHANG P, LI F. A new adaptive weighted mean filter for removing salt-and-pepper noise[J]. IEEE Signal Processing Letters, 2014, 21(10): 1280-1283.
[32] RAKSHIT M, DAS S. An efficient ecg denoising methodology using empirical mode decomposition and adaptive switching mean filter[J]. Biomedical Signal Processing and Control, 2018, 40: 140-148.
[33] MONTINE T J, BUKHARI S A, WHITE L R. Cognitive impairment in older adults and therapeutic strategies[J]. Pharmacological Reviews, 2021, 73(1): 152-162.
[34] CIESIELSKA N, SOKOŁOWSKI R, MAZUR E, et al. Is the montreal cognitive assessment (moca) test better suited than the mini-mental state examination (mmse) in mild cognitive impairment (mci) detection among people aged over 60 meta-analysis[J]. Psychiatr Pol, 2016, 50 (5): 1039-1052.
[35] FRISONI G B, BOCCARDI M, BARKHOF F, et al. Strategic roadmap for an early diagnosis of alzheimer’s disease based on biomarkers[J]. The Lancet Neurology, 2017, 16(8): 661-676.
[36] CULLEN N C, LEUZY A, PALMQVIST S, et al. Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations[J]. Nature Aging, 2021, 1(1): 114-123.
[37] NG T K S, HO C S H, TAM W W S, et al. Decreased serum brain-derived neurotrophic factor (bdnf) levels in patients with alzheimer’ s disease (ad): a systematic review and meta-analysis [J]. International Journal of Molecular Sciences, 2019, 20(2): 257.
[38] BUCHHAVE P, MINTHON L, ZETTERBERG H, et al. Cerebrospinal fluid levels of𝛽-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of alzheimer dementia[J]. Archives of General Psychiatry, 2012, 69(1): 98-106.
[39] HANSSON O, SEIBYL J, STOMRUD E, et al. Csf biomarkers of alzheimer’s disease concord with amyloid-𝛽 pet and predict clinical progression: a study of fully automated immunoassays in biofinder and adni cohorts[J]. Alzheimer’s & Dementia, 2018, 14(11): 1470-1481.
[40] LEUZY A, CHIOTIS K, LEMOINE L, et al. Tau pet imaging in neurodegenerative tauopathiesstill a challenge[J]. Molecular Psychiatry, 2019, 24(8): 1112-1134.
[41] RABINOVICI G D, GATSONIS C, APGAR C, et al. Association of amyloid positron emission tomography with subsequent change in clinical management among medicare beneficiaries with mild cognitive impairment or dementia[J]. Jama, 2019, 321(13): 1286-1294.
[42] YE Q, BAI F. Contribution of diffusion, perfusion and functional mri to the disconnection hypothesis in subcortical vascular cognitive impairment[J]. Stroke and Vascular Neurology, 2018, 3(3): 131-139.
[43] JEONG J. Eeg dynamics in patients with alzheimer’s disease[J]. Clinical Neurophysiology, 2004, 115(7): 1490-1505.
[44] HALLETT M. Transcranial magnetic stimulation: A primer[J]. Neuron, 2007, 55(2): 187-199.
[45] KIMISKIDIS V. Transcranial magnetic stimulation (tms) coupled with electroencephalography (eeg): biomarker of the future[J]. Revue Neurologique, 2016, 172(2): 123-126.
[46] CAO K X, MA M L, WANG C Z, et al. Tms-eeg: an emerging tool to study the neurophysiologic biomarkers of psychiatric disorders[J]. Neuropharmacology, 2021: 108574.
[47] BAGATTINI C, MUTANEN T P, FRACASSI C, et al. Predicting alzheimer’s disease severity by means of tms–eeg coregistration[J]. Neurobiology of aging, 2019, 80: 38-45.
[48] BENUSSI A, GRASSI M, PALLUZZI F, et al. Classification accuracy of tms for the diagnosis of mild cognitive impairment[J]. Brain Stimulation, 2021, 14(2): 241-249.
[49] NASREDDINE Z S, PHILLIPS N A, BÉDIRIAN V, et al. The montreal cognitive assessment, moca: a brief screening tool for mild cognitive impairment[J]. Journal of the American Geriatrics Society, 2005, 53(4): 695-699.
[50] CARLÉN M. What constitutes the prefrontal cortex[J]. Science, 2017, 358(6362): 478-482.
[51] AHMED M A, DARWISH E S, KHEDR E M, et al. Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in alzheimer’ s dementia[J]. Journal of Neurology, 2012, 259(1): 83-92.
[52] ROGASCH N C, THOMSON R H, FARZAN F, et al. Removing artefacts from tms-eeg recordings using independent component analysis: importance for assessing prefrontal and motor cortex network properties[J]. Neuroimage, 2014, 101: 425-39.
[53] ESSER S, HUBER R, MASSIMINI M, et al. A direct demonstration of cortical ltp in humans: A combined tms/eeg study[J]. Brain Research Bulletin, 2006, 69(1): 86-94.
[54] ROSANOVA M, CASAROTTO S, PIGORINI A, et al. Combining transcranial magnetic stimulation with electroencephalography to study human cortical excitability and effective connectivity[J]. Neuromethods, 2012, 67: 435-457.
[55] ROGASCH N C, DASKALAKIS Z J, FITZGERALD P B. Cortical inhibition of distinct mechanisms in the dorsolateral prefrontal cortex is related to working memory performance: A tms– eeg study[J]. Cortex, 2015, 64: 68-77.
[56] KERWIN L J, KELLER C J, WU W, et al. Test-retest reliability of transcranial magnetic stimulation eeg evoked potentials[J]. Brain Stimulation, 2018, 11(3): 536-544.
[57] PELLICCIARI M C, BRIGNANI D, MINIUSSI C. Excitability modulation of the motor system induced by transcranial direct current stimulation: A multimodal approach[J]. NeuroImage, 2013, 83: 569-580.
[58] HJORTH B. Eeg analysis based on time domain properties[J]. Electroencephalogr Clin Neurophysiol, 1970, 29(3): 306-310.
[59] RAJJI T K, SUN Y, ZOMORRODI-MOGHADDAM R, et al. Pas-induced potentiation of cortical-evoked activity in the dorsolateral prefrontal cortex[J]. Neuropsychopharmacology, 2013, 38(12): 2545-2552.
[60] 龚铁梁. 数据降维算法研究及其应用[D]. 武汉: 湖北大学, 2012.
[61] 宋虹亮. 立铣刀磨损监测系统设计[D]. 成都: 西南交通大学, 2020.
[62] VAN DER MAATEN L, HINTON G. Visualizing data using t-sne[J]. Journal of Machine Learning Research, 2008, 9(86): 2579-2605.
[63] CHANG C, LIN C. Libsvm: A library for support vector machines[J]. ACM Trans. Intell. Syst. Technol., 2011, 2: 1-39.
[64] MARIS E, OOSTENVELD R. Nonparametric statistical testing of eeg-and meg-data[J]. Journal of Neuroscience Methods, 2007, 164(1): 177-190.
[65] CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C]//KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: Association for Computing Machinery, 2016: 785–794.
[66] ALAGONA G, BELLA R, FERRI R, et al. Transcranial magnetic stimulation in alzheimer disease: motor cortex excitability and cognitive severity[J]. Neuroscience Letters, 2001, 314 (1-2): 57-60.
[67] DI LAZZARO V, OLIVIERO A, PILATO F, et al. Motor cortex hyperexcitability to transcranial magnetic stimulation in alzheimer’ s disease[J]. Journal of Neurology, Neurosurgery & Psychiatry, 2004, 75(4): 555-559.
[68] JOSEPH S, KNEZEVIC D, ZOMORRODI R, et al. Dorsolateral prefrontal cortex excitability abnormalities in alzheimer’s dementia: Findings from transcranial magnetic stimulation and electroencephalography study[J]. International Journal of Psychophysiology, 2021, 169: 55-62.
[69] NISKANEN E, KÖNÖNEN M, MÄÄTTÄ S, et al. New insights into alzheimer’s disease progression: a combined tms and structural mri study[J]. PLoS One, 2011, 6(10): e26113.
[70] GOU Z, WANG X, WANG W. Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors[J]. Dongwuxue Yanjiu, 2013, 33(6): E75-81.
[71] MURPHY S C, PALMER L M, NYFFELER T, et al. Transcranial magnetic stimulation (tms) inhibits cortical dendrites[J]. Elife, 2016, 5: e13598.
[72] PREMOLI I, CASTELLANOS N, RIVOLTA D, et al. Tms-eeg signatures of gabaergic neurotransmission in the human cortex[J]. Journal of Neuroscience, 2014, 34(16): 5603-5612.
[73] LI Y, SUN H, CHEN Z, et al. Implications of gabaergic neurotransmission in alzheimer’s disease[J]. Frontiers in Aging Neuroscience, 2016, 8: 31.
[74] CONDE V, TOMASEVIC L, AKOPIAN I, et al. The non-transcranial tms-evoked potential is an inherent source of ambiguity in tms-eeg studies[J]. Neuroimage, 2019, 185: 300-312.
[75] JELLINGER K. Towards a biological definition of alzheimer disease[J]. Int J Neurol Neurother, 2020, 7: 95.
[76] MILÀ-ALOMÀ M, SALVADÓ G, SHEKARI M, et al. Comparative analysis of different definitions of amyloid-𝛽 positivity to detect early downstream pathophysiological alterations in preclinical alzheimer[J]. The Journal of Prevention of Alzheimer’s Disease, 2021, 8(1): 68-77
修改评论