中文版 | English
题名

神经科医用传感器关键技术研究

其他题名
RESEARCH ON KEY TECHNOLOGIES OFMEDICAL SENSORS IN NEUROLOGY
姓名
姓名拼音
ZHANG Jiahao
学号
11930175
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
王太宏
导师单位
电子与电气工程系
论文答辩日期
2022-05-14
论文提交日期
2022-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

医学的进步离不开检测技术的发展。为了辅助临床医生对患者进行早期筛查与诊断,实现精准评估、个体化治疗,就必须要把先进传感技术与临床实践结合起来。神经系统是一个高度耦合的系统,巨量的信息在神经系统中以电信号的形式迅速、精确、稳定地传递,控制着肌肉表现出各种动作与行为,也构建了各种初级、高级的认知功能。因此对于神经系统疾病的诊断与评估要坚持系统观念,既要关注电信号在大脑的起源,也要关注肌肉对电信号的的反应,还要关注外在的具体症状表现。

在对大脑和肌肉的评估中,生理电传感具有极高的时间分辨率;在对症状的评估中,毫米波雷达具有非接触、高精度的特点。本文基于ADS1299生理电采集芯片,设计并搭建了用于肌电信号检测与脑电信号检测的生理电传感器;基于A111毫米波雷达芯片,设计并搭建了一套用于检测与评估静止型震颤和姿势型震颤的多毫米波雷达传感系统。

随后,本文研究了这两种传感技术在神经科临床的实际应用。本文使用多毫米波雷达传感系统采集了帕金森震颤和原发性震颤数据,非病理性的身体抖动和呼吸引起的胸腔起伏会导致雷达信号基线漂移,本文使用经验模态分解法解析信号,通过频谱分析来筛选用于信号重构的分量,并在此基础上计算震颤频率和震颤幅度两个重要指标。该方法有望未来在神经科临床得到推广,用于患者震颤的定量评估。

传统的脑功能评估一般是对大脑的静态测量,经颅磁刺激同步脑电通过检测大脑对外界磁场刺激的动态响应来评估大脑功能。本文采集了认知障碍患者与正常对照的经颅磁刺激同步脑电数据并进行了预处理,在保留脑电时空特征的基础上,对经颅磁刺激诱发电位进行特征工程,然后使用机器学习实现了对认知障碍患者与健康对照的有效分类,最后从数据统计和神经病理学两个角度讨论了特征选择对于分类结果的影响。该方法提供了认知障碍的潜在神经生物标记物,未来有望应用于认知障碍患者的辅助诊断。

其他摘要

The progress of medicine is inseparable from the development of sensing technology. It is necessary to combine advanced sensing technology with clinical practice in order to assist clinicians in early screening and diagnosis, accurate assessment and individualized treatment. The nervous system is a highly coupled system, a huge amount of information is transmitted quickly, accurately and stably in this complex system, which controls the external behavior of the human body and also forms various primary and advanced cognitive functions. Therefore, the diagnosis of nervous system diseases must adhere to the systematic concept. It is necessary to pay attention not only to the origin of electrical signals in the brain, but also to the response of muscles, and to the specific external symptoms.

In the evaluation of the brain and muscles, physiological electricity has extremely high temporal resolution. In the evaluation of symptoms, millimeter-wave radar has the characteristics of non-contact and high precision. Based on the ADS1299 chip, this paper designed and built physiological electrical sensors for electromyography (EMG) detection and electroencephalography (EEG) detection. Based on the A111 millimeter-wave radar chip, this paper designed and built a multi millimeter-wave radar sensing system for detecting and evaluating resting tremor and postural tremor.

Subsequently, this paper investigated the practical application of these two sensing technologies in neurology. This paper used the multi millimeter-wave radar sensing system to collect Parkinson's tremor and essential tremor data. Non-pathological body shaking and thoracic undulation caused by breathing can lead to baseline drift of the radar signal, the empirical mode decomposition method was used to analyze the signal, the components used for signal reconstruction were selected by spectrum analysis. Finally, the tremor frequency and tremor amplitude were calculated on this basis. This method is expected to be promoted in neurology for quantitative assessment of tremor.

Traditional brain function assessments are generally static measurements of the brain, but transcranial magnetic stimulation (TMS) synchronized EEG evaluates brain by detecting the brain's dynamic response to external magnetic field. In this paper, the TMS-EEG of patients with cognitive impairment and healthy controls were collected and preprocessed. On the premise of preserving the temporal and spatial features of EEG, feature engineering was carried out on the transcranial magnetic stimulation evoked potentials. Then, effective classification of cognitive impairment and healthy controls achieved by machine learning. Finally, we discussed the impact of features selection on classification results from the perspectives of data statistics and neuropathology. This method provides potential neural biomarkers of cognitive impairment. It is expected to be used in the auxiliary diagnosis of cognitive impairment in the future.

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] BOES A D, PRASAD S, LIU H, et al. Network localization of neurological symptoms from focal brain lesions[J]. Brain, 2015, 138(10): 3061-3075.
[2] ABDO W F, VAN DE WARRENBURG B P, BURN D J, et al. The clinical approach to movement disorders[J]. Nature Reviews Neurology, 2010, 6(1): 29-37.
[3] SHAHED J, JANKOVIC J. Exploring the relationship between essential tremor and parkinson’s disease[J]. Parkinsonism & Related Disorders, 2007, 13(2): 67-76.
[4] DEUSCHL G, BAIN P, BRIN M, et al. Consensus statement of the movement disorder society on tremor[J]. Movement Disorders, 1998, 13(S3): 2-23.
[5] ON RATING SCALES FOR PARKINSON’S DISEASE M D S T F. The unified parkinson’s disease rating scale (updrs): status and recommendations[J]. Movement Disorders, 2003, 18(7): 738-750.
[6] ELBLE R J. The essential tremor rating assessment scale[J]. Journal of Neurology & Neuromedicine, 2016, 1(4).
[7] SMAGA S. Tremor[J]. American Family Physician, 2003, 68(8): 1545-1552.
[8] NISTICÒ R, QUATTRONE A, CRASÀ M, et al. Evaluation of rest tremor in different positions in parkinson’ s disease and essential tremor plus[J]. Neurological Sciences, 2022: 1-7.
[9] LIN C H, WU J X, HSU J C, et al. Tremor class scaling for parkinson disease patients using an array x-band microwave doppler-based upper limb movement quantizer[J]. IEEE Sensors Journal, 2021, 21(19): 21473-21485.
[10] HAUBENBERGER D, ABBRUZZESE G, BAIN P G, et al. Transducer-based evaluation of tremor[J]. Movement Disorders, 2016, 31(9): 1327-1336.
[11] MUSAB R, AS’ ARRY A, REZALI K A M, et al. Tremor quantification and its measurements using shimmer[C]//Journal of Physics: Conference Series: volume 1262. IOP Publishing, 2019:012024.
[12] DAI H, ZHANG P, LUETH T C. Quantitative assessment of parkinsonian tremor based on an inertial measurement unit[J]. Sensors, 2015, 15(10): 25055-25071.
[13] BHAVANA C, GOPAL J, RAGHAVENDRA P, et al. Techniques of measurement for parkinson’s tremor highlighting advantages of embedded imu over emg[C]//2016 International Conference on Recent Trends in Information Technology (ICRTIT). IEEE, 2016: 1-5.
[14] MICHOUD B, GUILLOU E, BRICENO H, et al. Real-time marker-free motion capture from multiple cameras[C]//2007 IEEE 11th International Conference on Computer Vision. IEEE,2007: 1-7.
[15] HAYASHIDA T, ZIN T T, SAKAI K, et al. Evaluation of the severity of tremor based on each signal acquired from the displacement of the hand movements[C]//2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). IEEE, 2021: 760-761.
[16] TREMBLAY S, ROGASCH N C, PREMOLI I, et al. Clinical utility and prospective of tms–eeg [J]. Clinical Neurophysiology, 2019, 130(5): 802-844.
[17] LEFAUCHEUR J P, ALEMAN A, BAEKEN C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rtms): an update (2014–2018)[J]. Clinical Neurophysiology, 2020, 131(2): 474-528.
[18] LIOUMIS P, KIČIĆ D, SAVOLAINEN P, et al. Reproducibility of tms—evoked eeg responses [J]. Human Brain Mapping, 2009, 30(4): 1387-1396.
[19] ROGASCH N C, SULLIVAN C, THOMSON R H, et al. Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: A review and introduction to the opensource tesa software[J]. Neuroimage, 2017, 147: 934-951.
[20] DELORME A, MAKEIG S. Eeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysis[J]. Journal of Neuroscience Methods, 2004, 134(1): 9-21.
[21] 胡理. 脑电信号处理与特征提取[M]. 北京: 科学出版社, 2020: 3-5.
[22] MEINEL H H. Automotive millimeterwave radar history and present status[C]//1998 28th European Microwave Conference: volume 1. IEEE, 1998: 619-629.
[23] NANZER J A, ROGERS R L. Human presence detection using millimeter-wave radiometry [J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(12): 2727-2733.
[24] PETKIE D T, BENTON C, BRYAN E. Millimeter wave radar for remote measurement of vital signs[C]//2009 IEEE Radar Conference. IEEE, 2009: 1-3.
[25] LIEN J, GILLIAN N, KARAGOZLER M E, et al. Soli: Ubiquitous gesture sensing with millimeter wave radar[J]. ACM Transactions on Graphics (TOG), 2016, 35(4): 1-19.
[26] BHATIA K P, BAIN P, BAJAJ N, et al. Consensus statement on the classification of tremors. from the task force on tremor of the international parkinson and movement disorder society[J]. Movement Disorders, 2018, 33(1): 75-87.
[27] BOUDRAA A, CEXUS J, SAIDI Z. Emd-based signal noise reduction[J]. International Journal of Signal Processing, 2004, 1(1): 33-37.
[28] BOUDRAA A O, CEXUS J C. Emd-based signal filtering[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(6): 2196-2202.
[29] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 1998, 454(1971): 903-995.
[30] MARTINEZ MANZANERA O, ELTING J W, VAN DER HOEVEN J H, et al. Tremor detection using parametric and non-parametric spectral estimation methods: A comparison with clinical assessment[J]. PloS One, 2016, 11(6): e0156822.
[31] ZHANG P, LI F. A new adaptive weighted mean filter for removing salt-and-pepper noise[J]. IEEE Signal Processing Letters, 2014, 21(10): 1280-1283.
[32] RAKSHIT M, DAS S. An efficient ecg denoising methodology using empirical mode decomposition and adaptive switching mean filter[J]. Biomedical Signal Processing and Control, 2018, 40: 140-148.
[33] MONTINE T J, BUKHARI S A, WHITE L R. Cognitive impairment in older adults and therapeutic strategies[J]. Pharmacological Reviews, 2021, 73(1): 152-162.
[34] CIESIELSKA N, SOKOŁOWSKI R, MAZUR E, et al. Is the montreal cognitive assessment (moca) test better suited than the mini-mental state examination (mmse) in mild cognitive impairment (mci) detection among people aged over 60 meta-analysis[J]. Psychiatr Pol, 2016, 50 (5): 1039-1052.
[35] FRISONI G B, BOCCARDI M, BARKHOF F, et al. Strategic roadmap for an early diagnosis of alzheimer’s disease based on biomarkers[J]. The Lancet Neurology, 2017, 16(8): 661-676.
[36] CULLEN N C, LEUZY A, PALMQVIST S, et al. Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations[J]. Nature Aging, 2021, 1(1): 114-123.
[37] NG T K S, HO C S H, TAM W W S, et al. Decreased serum brain-derived neurotrophic factor (bdnf) levels in patients with alzheimer’ s disease (ad): a systematic review and meta-analysis [J]. International Journal of Molecular Sciences, 2019, 20(2): 257.
[38] BUCHHAVE P, MINTHON L, ZETTERBERG H, et al. Cerebrospinal fluid levels of𝛽-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of alzheimer dementia[J]. Archives of General Psychiatry, 2012, 69(1): 98-106.
[39] HANSSON O, SEIBYL J, STOMRUD E, et al. Csf biomarkers of alzheimer’s disease concord with amyloid-𝛽 pet and predict clinical progression: a study of fully automated immunoassays in biofinder and adni cohorts[J]. Alzheimer’s & Dementia, 2018, 14(11): 1470-1481.
[40] LEUZY A, CHIOTIS K, LEMOINE L, et al. Tau pet imaging in neurodegenerative tauopathiesstill a challenge[J]. Molecular Psychiatry, 2019, 24(8): 1112-1134.
[41] RABINOVICI G D, GATSONIS C, APGAR C, et al. Association of amyloid positron emission tomography with subsequent change in clinical management among medicare beneficiaries with mild cognitive impairment or dementia[J]. Jama, 2019, 321(13): 1286-1294.
[42] YE Q, BAI F. Contribution of diffusion, perfusion and functional mri to the disconnection hypothesis in subcortical vascular cognitive impairment[J]. Stroke and Vascular Neurology, 2018, 3(3): 131-139.
[43] JEONG J. Eeg dynamics in patients with alzheimer’s disease[J]. Clinical Neurophysiology, 2004, 115(7): 1490-1505.
[44] HALLETT M. Transcranial magnetic stimulation: A primer[J]. Neuron, 2007, 55(2): 187-199.
[45] KIMISKIDIS V. Transcranial magnetic stimulation (tms) coupled with electroencephalography (eeg): biomarker of the future[J]. Revue Neurologique, 2016, 172(2): 123-126.
[46] CAO K X, MA M L, WANG C Z, et al. Tms-eeg: an emerging tool to study the neurophysiologic biomarkers of psychiatric disorders[J]. Neuropharmacology, 2021: 108574.
[47] BAGATTINI C, MUTANEN T P, FRACASSI C, et al. Predicting alzheimer’s disease severity by means of tms–eeg coregistration[J]. Neurobiology of aging, 2019, 80: 38-45.
[48] BENUSSI A, GRASSI M, PALLUZZI F, et al. Classification accuracy of tms for the diagnosis of mild cognitive impairment[J]. Brain Stimulation, 2021, 14(2): 241-249.
[49] NASREDDINE Z S, PHILLIPS N A, BÉDIRIAN V, et al. The montreal cognitive assessment, moca: a brief screening tool for mild cognitive impairment[J]. Journal of the American Geriatrics Society, 2005, 53(4): 695-699.
[50] CARLÉN M. What constitutes the prefrontal cortex[J]. Science, 2017, 358(6362): 478-482.
[51] AHMED M A, DARWISH E S, KHEDR E M, et al. Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in alzheimer’ s dementia[J]. Journal of Neurology, 2012, 259(1): 83-92.
[52] ROGASCH N C, THOMSON R H, FARZAN F, et al. Removing artefacts from tms-eeg recordings using independent component analysis: importance for assessing prefrontal and motor cortex network properties[J]. Neuroimage, 2014, 101: 425-39.
[53] ESSER S, HUBER R, MASSIMINI M, et al. A direct demonstration of cortical ltp in humans: A combined tms/eeg study[J]. Brain Research Bulletin, 2006, 69(1): 86-94.
[54] ROSANOVA M, CASAROTTO S, PIGORINI A, et al. Combining transcranial magnetic stimulation with electroencephalography to study human cortical excitability and effective connectivity[J]. Neuromethods, 2012, 67: 435-457.
[55] ROGASCH N C, DASKALAKIS Z J, FITZGERALD P B. Cortical inhibition of distinct mechanisms in the dorsolateral prefrontal cortex is related to working memory performance: A tms– eeg study[J]. Cortex, 2015, 64: 68-77.
[56] KERWIN L J, KELLER C J, WU W, et al. Test-retest reliability of transcranial magnetic stimulation eeg evoked potentials[J]. Brain Stimulation, 2018, 11(3): 536-544.
[57] PELLICCIARI M C, BRIGNANI D, MINIUSSI C. Excitability modulation of the motor system induced by transcranial direct current stimulation: A multimodal approach[J]. NeuroImage, 2013, 83: 569-580.
[58] HJORTH B. Eeg analysis based on time domain properties[J]. Electroencephalogr Clin Neurophysiol, 1970, 29(3): 306-310.
[59] RAJJI T K, SUN Y, ZOMORRODI-MOGHADDAM R, et al. Pas-induced potentiation of cortical-evoked activity in the dorsolateral prefrontal cortex[J]. Neuropsychopharmacology, 2013, 38(12): 2545-2552.
[60] 龚铁梁. 数据降维算法研究及其应用[D]. 武汉: 湖北大学, 2012.
[61] 宋虹亮. 立铣刀磨损监测系统设计[D]. 成都: 西南交通大学, 2020.
[62] VAN DER MAATEN L, HINTON G. Visualizing data using t-sne[J]. Journal of Machine Learning Research, 2008, 9(86): 2579-2605.
[63] CHANG C, LIN C. Libsvm: A library for support vector machines[J]. ACM Trans. Intell. Syst. Technol., 2011, 2: 1-39.
[64] MARIS E, OOSTENVELD R. Nonparametric statistical testing of eeg-and meg-data[J]. Journal of Neuroscience Methods, 2007, 164(1): 177-190.
[65] CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C]//KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: Association for Computing Machinery, 2016: 785–794.
[66] ALAGONA G, BELLA R, FERRI R, et al. Transcranial magnetic stimulation in alzheimer disease: motor cortex excitability and cognitive severity[J]. Neuroscience Letters, 2001, 314 (1-2): 57-60.
[67] DI LAZZARO V, OLIVIERO A, PILATO F, et al. Motor cortex hyperexcitability to transcranial magnetic stimulation in alzheimer’ s disease[J]. Journal of Neurology, Neurosurgery & Psychiatry, 2004, 75(4): 555-559.
[68] JOSEPH S, KNEZEVIC D, ZOMORRODI R, et al. Dorsolateral prefrontal cortex excitability abnormalities in alzheimer’s dementia: Findings from transcranial magnetic stimulation and electroencephalography study[J]. International Journal of Psychophysiology, 2021, 169: 55-62.
[69] NISKANEN E, KÖNÖNEN M, MÄÄTTÄ S, et al. New insights into alzheimer’s disease progression: a combined tms and structural mri study[J]. PLoS One, 2011, 6(10): e26113.
[70] GOU Z, WANG X, WANG W. Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors[J]. Dongwuxue Yanjiu, 2013, 33(6): E75-81.
[71] MURPHY S C, PALMER L M, NYFFELER T, et al. Transcranial magnetic stimulation (tms) inhibits cortical dendrites[J]. Elife, 2016, 5: e13598.
[72] PREMOLI I, CASTELLANOS N, RIVOLTA D, et al. Tms-eeg signatures of gabaergic neurotransmission in the human cortex[J]. Journal of Neuroscience, 2014, 34(16): 5603-5612.
[73] LI Y, SUN H, CHEN Z, et al. Implications of gabaergic neurotransmission in alzheimer’s disease[J]. Frontiers in Aging Neuroscience, 2016, 8: 31.
[74] CONDE V, TOMASEVIC L, AKOPIAN I, et al. The non-transcranial tms-evoked potential is an inherent source of ambiguity in tms-eeg studies[J]. Neuroimage, 2019, 185: 300-312.
[75] JELLINGER K. Towards a biological definition of alzheimer disease[J]. Int J Neurol Neurother, 2020, 7: 95.
[76] MILÀ-ALOMÀ M, SALVADÓ G, SHEKARI M, et al. Comparative analysis of different definitions of amyloid-𝛽 positivity to detect early downstream pathophysiological alterations in preclinical alzheimer[J]. The Journal of Prevention of Alzheimer’s Disease, 2021, 8(1): 68-77

所在学位评定分委会
电子与电气工程系
国内图书分类号
TP212
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335975
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
张佳豪. 神经科医用传感器关键技术研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930175-张佳豪-电子与电气工程(14014KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张佳豪]的文章
百度学术
百度学术中相似的文章
[张佳豪]的文章
必应学术
必应学术中相似的文章
[张佳豪]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。