[1] LIN J, ZOU X Q, HUANG F M, et al. Quantitative estimation of sea surface temperature increases resulting from the thermal discharge of coastal power plants in China [J]. Marine Pollution Bulletin, 2021, 164.
[2] RAPTIS C E, VAN VLIET M T H, PFISTER S. Global thermal pollution of rivers from thermoelectric power plants [J]. Environmental Research Letters, 2016, 11(10).
[3] LIN J, ZOU X Q, HUANG F M. Effects of the thermal discharge from an offshore power plant on plankton and macrobenthic communities in subtropical China [J]. Marine Pollution Bulletin, 2018, 131: 106-114.
[4] CHEW L L, CHONG V C, WONG R C S, et al. Three decades of sea water abstraction by Kapar power plant (Malaysia): What impacts on tropical zooplankton community? [J]. Marine Pollution Bulletin, 2015, 101(1): 69-84.
[5] GRUBER N. Carbon at the coastal interface [J]. Nature, 2015, 517(7533): 148-149.
[6] MARTINEZ M L, INTRALAWAN A, VAZQUEZ G, et al. The coasts of our world: Ecological, economic and social importance [J]. Ecological Economics, 2007, 63(2-3): 254-272.
[7] STEINMAN A D, CARDINALE B J, MUNNS W R, et al. Ecosystem services in the Great Lakes [J]. Journal of Great Lakes Research, 2017, 43(3): 161-168.
[8] CHUANG Y L, YANG H H, LIN H J. Effects of a thermal discharge from a nuclear power plant on phytoplankton and periphyton in subtropical coastal waters [J]. Journal of Sea Research, 2009, 61(4): 197-205.
[9] 贺佳惠, 梁春利, 李名松. 核电站近岸温度场航空热红外遥感测量数据处理研究 [J]. 国土资源遥感, 2010: 51-53.
[10] 朱利, 赵利民, 王桥, 等. 核电站温排水分布卫星遥感监测及验证 [J]. 光谱学与光谱分析, 2014, 34: 3079-3084.
[11] RAYNER N A, BROHAN P, PARKER D E, et al. Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset [J]. Journal of Climate, 2006, 19(3): 446-469.
[12] JIA H L, ZHENG S, XIE J, et al. Influence of geographic setting on thermal discharge from coastal power plants [J]. Marine Pollution Bulletin, 2016, 111(1-2): 106-114.
[13] 张贝贝, 周静, 纪平. 滨海电厂温排水数值模拟研究现状 [J]. 中国水利水电科学研究院学报, 2014, 12: 402-409.
[14] LIN J, ZOU X Q, HUANG F M. Quantitative analysis of the factors influencing the dispersion of thermal pollution caused by coastal power plants [J]. Water Research, 2021, 188.
[15] VINNA L R, WUEST A, BOUFFARD D. Physical effects of thermal pollution in lakes [J]. Water Resources Research, 2017, 53(5): 3968-3987.
[16] SUH S W. A Hybrid Near-Field/Far-Field Thermal Discharge Model for Coastal Areas [J]. Marine Pollution Bulletin, 2001, 43(7): 225-233.
[17] 许静. 基于HJ-1B红外相机监测宁德核电温排水研究 [D]: 中国地质大学(北京), 2014.
[18] TANG D L, KESTER D R, WANG Z D, et al. AVHRR satellite remote sensing and shipboard measurements of the thermal plume from the Daya Bay, nuclear power station, China [J]. Remote Sensing of Environment, 2003, 84(4): 506-515.
[19] 栗小东. 基于遥感的滨海核电厂温排水污染监测研究 [D]: 华东师范大学, 2011.
[20] WANG X, WANG X X, FAN J C, et al. COMPARISON OF DIFFERENT SPATIAL RESOLUTION THERMAL INFRARED DATA IN MONITORING THERMAL PLUME FROM THE HONGYANHE NUCLEAR POWER PLANT [C]// Proceedings of the 36th IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing, PEOPLES R CHINA: IEEE, 2016: 4649-4652.
[21] HANAFIN J A, MINNETT P J. Measurements of the infrared emissivity of a wind-roughened sea surface [J]. Applied Optics, 2005, 44(3): 398-411.
[22] MINNETT P J, ALVERA-AZCARATE A, CHIN T M, et al. Half a century of satellite remote sensing of sea-surface temperature [J]. Remote Sensing of Environment, 2019, 233.
[23] BARTON I J. Transmission model and ground-truth investigation of satellite- derived sea surface temperatures [J]. Journal of Climate & Applied Meteorology, 1985, 24(6): 508-516.
[24] ANDING D, KAUTH R. Estimation of sea surface temperature from space [J]. Remote Sensing of Environment, 1970, 1(4): 217-220.
[25] DUDHIA A. NOISE CHARACTERISTICS OF THE AVHRR INFRARED CHANNELS [J]. International Journal of Remote Sensing, 1989, 10(4-5): 637-644.
[26] KARLSSON K-G, HÅKANSSON N, MITTAZ J P D, et al. Impact of AVHRR Channel 3b Noise on Climate Data Records: Filtering Method Applied to the CM SAF CLARA-A2 Data Record [J]. Remote Sensing, 2017, 9(6): 568.
[27] SIMPSON J J, YHANN S R. Reduction of noise in AVHRR channel 3 data with minimum distortion [J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(2): 315-328.
[28] ZAVODY A M, MUTLOW C T, LLEWELLYN-JONES D T. A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer [J]. Journal of Geophysical Research, 1995, 100(C1): 937-952.
[29] ROTHMAN L S, GAMACHE R R, GOLDMAN A, et al. The HITRAN database: 1986 edition [J]. Applied Optics, 1987, 26(19): 4058-4097.
[30] LLEWELLYN‐JONES D T, MINNETT P J, SAUNDERS R W, et al. Satellite multichannel infrared measurements of sea surface temperature of the N.E. Atlantic Ocean using AVHRR/2 [J]. Quarterly Journal of the Royal Meteorological Society, 1984, 110(465): 613-631.
[31] MONTANARO M, LUNSFORD A, TESFAYE Z, et al. Radiometric Calibration Methodology of the Landsat 8 Thermal Infrared Sensor [J]. Remote Sensing, 2014, 6(9): 8803-8821.
[32] WANG Y, IENTILUCCI E J, RAQUENO N G, et al. Landsat 8 TIRS Calibration with External Sensors [C]// Proceedings of the Conference on Earth Observing Systems XXII. San Diego, USA: SPIE, 2017.
[33] WANG Y, IENTILUCCI E. A Practical Approach to Landsat 8 TIRS Stray Light Correction Using Multi-Sensor Measurements [J]. Remote Sensing, 2018, 10(4).
[34] 石海岗, 梁春利, 张建永, 等. 基于CBERS-04星田湾核电温排水遥感监测研究 [J]. 地理空间信息, 2019, 17: 75-79+10.
[35] 张春雷, 梁春利, 张建永, 等. 基于Landsat-8 TRIS数据的田湾核电站温排水遥感监测 [J]. 地理空间信息, 2019, 17: 70-72+87+11.
[36] 王任飞, 杨红艳, 朱利, 等. 温升包络线在核电站温排水监测中的应用 [J]. 环境监测管理与技术, 2020, 32: 49-52.
[37] 成丰, 朱利, 吴传庆, 等. 基于遥感数据的核电站温排水季节性分布监测分析——以阳江核电站为例 [J]. 环境保护, 2017, 45: 44-48.
[38] LIU M D, YIN X B, XU Q, et al. Monitoring of Fine-Scale Warm Drain-Off Water from Nuclear Power Stations in the Daya Bay Based on Landsat 8 Data [J]. Remote Sensing, 2020, 12(4).
[39] AHN Y H, SHANMUGAM P, LEE J H, et al. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea [J]. Marine Environmental Research, 2006, 61(2): 186-201.
[40] AOYAGI M. The impact of the Fukushima accident on nuclear power policy in Japan [J]. Nature Energy, 2021, 6(4): 326-328.
[41] KILPATRICK K A, PODESTA G, WALSH S, et al. A decade of sea surface temperature from MODIS [J]. Remote Sensing of Environment, 2015, 165: 27-41.
[42] FENG L, HOU X J, LI J S, et al. Exploring the potential of Rayleigh-corrected reflectance in coastal and inland water applications: A simple aerosol correction method and its merits [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146: 52-64.
[43] WULDER M A, LOVELAND T R, ROY D P, et al. Current status of Landsat program, science, and applications [J]. Remote Sensing of Environment, 2019, 225: 127-147.
[44] VERMOTE E, ROGER J C, FRANCH B, et al. LaSRC (Land Surface Reflectance Code): Overview, application and validation using MODIS, VIIRS, LANDSAT and Sentinel 2 data's [C]// Proceedings of the 38th IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Valencia, SPAIN: IEEE, 2018: 8173-8176.
[45] MASEK J G, VERMOTE E F, SALEOUS N E, et al. A Landsat surface reflectance dataset for North America, 1990-2000 [J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 68-72.
[46] ZHAO Q, YU L, LI X C, et al. Progress and Trends in the Application of Google Earth and Google Earth Engine [J]. Remote Sensing, 2021, 13(18).
[47] ZHU Z, WOODCOCK C E. Object-based cloud and cloud shadow detection in Landsat imagery [J]. Remote Sensing of Environment, 2012, 118: 83-94.
[48] PEKEL J-F, COTTAM A, GORELICK N, et al. High-resolution mapping of global surface water and its long-term changes [J]. Nature, 2016, 540(7633): 418-422.
[49] XU H Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery [J]. International Journal of Remote Sensing, 2006, 27(14): 3025-3033.
[50] MALAKAR N K, HULLEY G C, HOOK S J, et al. An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5717-5735.
[51] KALNAY E, KANAMITSU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project [J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437-471.
[52] 张彩, 朱利, 贾祥, 等. 不同空间分辨率热红外数据在近海核电厂温排水监测一致性研究 [J]. 遥感信息, 2015, 30: 71-76.
[53] 王祥, 苏岫, 张浩, 等. 不同空间分辨率遥感数据在核电站温排水监测中的应用研究 [J]. 海洋环境科学, 2020, 39: 646-651.
[54] VINCENT R F, MARSDEN R F, MINNETT P J, et al. Arctic waters and marginal ice zones: A composite Arctic sea surface temperature algorithm using satellite thermal data [J]. Journal of Geophysical Research: Oceans, 2008, 113(C4).
[55] 朱博, 王新鸿, 唐伶俐, 等. 光学遥感图像信噪比评估方法研究进展 [J]. 遥感技术与应用, 2010, 25: 303-309.
[56] REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science [J]. Nature, 2019, 566(7743): 195-204.
[57] DUGUAY-TETZLAFF A, BENTO V A, GÖTTSCHE F M, et al. Meteosat Land Surface Temperature Climate Data Record: Achievable Accuracy and Potential Uncertainties [J]. Remote Sensing, 2015, 7(10): 13139-13156.
[58] ERMIDA S L, SOARES P, MANTAS V, et al. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series [J]. Remote Sensing, 2020, 12(9): 1471.
[59] MARTINS J P A, TRIGO I F, BENTO V A, et al. A Physically Constrained Calibration Database for Land Surface Temperature Using Infrared Retrieval Algorithms [J]. Remote Sensing, 2016, 8(10): 808.
[60] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation [C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Munich, GERMANY: Springer, 2015: 234-241.
[61] SHIN H C, ROTH H R, GAO M C, et al. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1285-1298.
[62] ZHENG Z D, YANG X D, YU Z D, et al. Joint Discriminative and Generative Learning for Person Re-identification [C]// Proceedings of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019: 2133-2142.
[63] SALEHI S S M, ERDOGMUS D, GHOLIPOUR A. Tversky Loss Function for Image Segmentation Using 3D Fully Convolutional Deep Networks [C]// Proceedings of the 8th International Workshop on Machine Learning in Medical Imaging (MLMI). Quebec City, CANADA: Springer, 2017: 379-387.
[64] VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need [C]// Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS). Long Beach, USA: NeurIPS, 2017: 6000-6010.
[65] YIM J, JOO D, BAE J, et al. A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learning [C]// Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017: 7130-7138.
[66] BELETSKY D, SAYLOR J H, SCHWAB D J. Mean circulation in the Great Lakes [J]. Journal of Great Lakes Research, 1999, 25(1): 78-93.
修改评论