中文版 | English
题名

金属间电子化物纳米颗粒制备及催化性能研究

其他题名
PREPARATION AND CATALYTIC PROPERTIESOF INTERMETALLIC ELECTRIDES NANOPARTICLES
姓名
姓名拼音
JIAO Tiwen
学号
12032119
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
邬家臻
导师单位
材料科学与工程系
论文答辩日期
2022-05-06
论文提交日期
2022-06-18
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

金属间电子化物具有较小的功函数、独特的可逆氢存储释放能力以及优异的化学稳定性,是一种新型催化剂材料,在加氢热催化、电催化析氢等领域表现出巨大的应用潜力。然而目前大多数金属间电子化物通过电弧熔炼法(arc melting method)或者固相反应路线(solid-state reactions)合成,产物通常为块体材料(尺寸通常大于1 mm),这导致其比表面积过小,限制了其催化性能的发挥。虽有人提出用金属闪蒸法制备金属间电子化物纳米颗粒,但由于高成本、低产量等缺点,较难进行实际应用。

针对以上问题,本课题基于简单的熔盐法,创新性地以CaH2/Ca 作为还原剂、KCl/LiCl-KCl共晶作为熔盐,成功制备了金属间电子化物纳米颗粒。主要研究内容及结果归纳如下:

在氩气保护的非密闭体系下,采用以CaH2为还原剂改进的熔盐法实现了金属间电子化物LaCu0.67Si1.33的纳米化。其平均粒径小于100 nm,比表面积高达44.5 m2 g-1。此外,以Ca为还原剂成功合成出金属间电子化物Y5Si3纳米颗粒,其比表面积同样达到了11.8 m2 g-1。本论文还进一步探究了其它金属间电子化物YB2、LaCoSi的纳米化制备方法。研究结果表明,通过熔盐法制备金属间电子化物纳米颗粒具有普适性,推广了熔盐法的应用范围,为金属间电子化物的纳米化提供了有效途径。

在此基础上,研究了金属间电子化物LaCu0.67Si1.33、Y5Si3的二氧化碳还原、选择加氢以及电催化析氢等催化性质,结果表明其催化性能优异,表现出极大的应用潜力。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] LI Z, WU Y. 2D Early Transition Metal Carbides (MXenes) for Catalysis [J]. Small, 2019, 15(29): 1804736.
[2] LI Y-W, ZHANG W-J, LI J, et al. Fe-MOF-Derived Efficient ORR/OER Bifunctional Electrocatalyst for Rechargeable Zinc–Air Batteries [J]. ACS Appl Mater Interfaces, 2020, 12(40): 44710-9.
[3] HOSONO H, KITANO M. Advances in Materials and Applications of Inorganic Electrides [J]. Chemical Reviews, 2021, 121(5): 3121-85.
[4] DYE J L. Electrides:  From 1D Heisenberg Chains to 2D Pseudo-Metals [J]. Inorganic Chemistry, 1997, 36(18): 3816-26.
[5] KRAUS C A. Solutions of metals in non-metallic solvents; I. General properties of solutions of metals in liquid ammonia [J]. Journal of the American Chemical Society, 1907, 29(11): 1557-71.
[6] ZUREK E, EDWARDS P P, HOFFMANN R. A molecular perspective on lithium–ammonia solutions [J]. Angewandte Chemie International Edition, 2009, 48(44): 8198-232.
[7] GIBSON G, ARGO W L. The absorption spectra of the blue solutions of certain alkali and alkaline earth metals in liquid ammonia and in methylamine [J]. Journal of the American Chemical Society, 1918, 40(9): 1327-61.
[8] DYE J L. Electrides: ionic salts with electrons as the anions [J]. Science, 1990, 247(4943): 663-8.
[9] DYE J L. Electrides: Early Examples of Quantum Confinement [J]. Accounts of Chemical Research, 2009, 42(10): 1564-72.
[10] LE L D, ISSA D, VAN ECK B, et al. Preparation of alkalide and electride films by direct vapor deposition [J]. The Journal of Physical Chemistry, 1982, 86(1): 7-9.
[11] WARD D L, HUANG R, DYE J L. Structures of alkalides and electrides. I. Structure of potassium cryptand
[2.2.2]* electride [J]. Acta Crystallographica Section C: Crystal Structure Communications, 1988, 44(8): 1374-6.
[12] HUANG R H, WAGNER M J, GILBERT D J, et al. Structure and Properties of Li+(Cryptand
[2.1.1])e-, an Electride with a 1D “Spin-Ladder-like” Cavity-Channel Geometry [J]. Journal of the American Chemical Society, 1997, 119(16): 3765-72.
[13] MATSUISHI S, TODA Y, MIYAKAWA M, et al. High-density electron anions in a nanoporous single crystal:[Ca24Al28O64]4+(4e-) [J]. Science, 2003, 301(5633): 626-9.
[14] KURASHIGE K, TODA Y, MATSTUISHI S, et al. Czochralski Growth of 12CaO·7Al2O3 Crystals [J]. Crystal Growth & Design, 2006, 6(7): 1602-5.
[15] TODA Y, YANAGI H, IKENAGA E, et al. Work Function of a Room‐Temperature, Stable Electride [Ca24Al28O64]4+(e-)4 [J]. Advanced Materials, 2007, 19(21): 3564-9.
[16] KITANO M, KANBARA S, INOUE Y, et al. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis [J]. Nature Communications, 2015, 6(1): 1-9.
[17] HAYASHI K, SUSHKO P V, HASHIMOTO Y, et al. Hydride ions in oxide hosts hidden by hydroxide ions [J]. Nature Communications, 2014, 5(1): 1-8.
[18] WU S, PENG Y-K, CHEN T-Y, et al. Removal of Hydrogen Poisoning by Electrostatically Polar MgO Support for Low-Pressure NH3 Synthesis at a High Rate over the Ru Catalyst [J]. ACS Catalysis, 2020, 10(10): 5614-22.
[19] LU Y, LI J, TADA T, et al. Water Durable Electride Y5Si3: Electronic Structure and Catalytic Activity for Ammonia Synthesis [J]. Journal of the American Chemical Society, 2016, 138(12): 3970-3.
[20] ROSOWSKI F, HORNUNG A, HINRICHSEN O, et al. Ruthenium catalysts for ammonia synthesis at high pressures: Preparation, characterization, and power-law kinetics [J]. Applied Catalysis A: General, 1997, 151(2): 443-60.
[21] LIANG C, WEI Z, XIN Q, et al. Ammonia synthesis over Ru/C catalysts with different carbon supports promoted by barium and potassium compounds [J]. Applied Catalysis A: General, 2001, 208(1-2): 193-201.
[22] WU J, GONG Y, INOSHITA T, et al. Tiered electron anions in multiple voids of LaScSi and their applications to ammonia synthesis [J]. Advanced Materials, 2017, 29(36): 1700924.
[23] GONG Y, WU J, KITANO M, et al. Ternary intermetallic LaCoSi as a catalyst for N2 activation [J]. Nature Catalysis, 2018, 1(3): 178-85.
[24] WU J, LI J, GONG Y, et al. Intermetallic electride catalyst as a platform for ammonia synthesis [J]. Angewandte Chemie International Edition, 2019, 58(3): 825-9.
[25] YE T-N, LU Y, LI J, et al. Copper-based intermetallic electride catalyst for chemoselective hydrogenation reactions [J]. Journal of the American Chemical Society, 2017, 139(47): 17089-97.
[26] LU Y, LI J, YE T-N, et al. Synthesis of rare-earth-based metallic electride nanoparticles and their catalytic applications to selective hydrogenation and ammonia synthesis [J]. ACS Catalysis, 2018, 8(12): 11054-8.
[27] YE T-N, LU Y, XIAO Z, et al. Palladium-bearing intermetallic electride as an efficient and stable catalyst for Suzuki cross-coupling reactions [J]. Nature Communications, 2019, 10(1): 1-10.
[28] BLASER H U, MALAN C, PUGIN B, et al. Selective hydrogenation for fine chemicals: Recent trends and new developments [J]. Advanced Synthesis & Catalysis, 2003, 345(1‐2): 103-51.
[29] MOLNAR A J C R. Efficient, selective, and recyclable palladium catalysts in carbon-carbon coupling reactions [J]. Chemical Reviews, 2011, 111(3): 2251-320.
[30] FIHRI A, BOUHRARA M, NEKOUEISHAHRAKI B, et al. Nanocatalysts for Suzuki cross-coupling reactions [J]. Chemical Society Reviews, 2011, 40(10): 5181-203.
[31] SCHEUERMANN G M, RUMI L, STEURER P, et al. Palladium Nanoparticles on Graphite Oxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki−Miyaura Coupling Reaction [J]. Journal of the American Chemical Society, 2009, 131(23): 8262-70.
[32] CHEN Z, VOROBYEVA E, MITCHELL S, et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling [J]. Nature Nanotechnology, 2018, 13(8): 702-7.
[33] YE T-N, LU Y, XIAO Z, et al. Palladium-bearing intermetallic electride as an efficient and stable catalyst for Suzuki cross-coupling reactions [J]. Nature Communications, 2019, 10(1): 5653.
[34] LU Y, YE T-N, PARK S-W, et al. Intermetallic ZrPd3-Embedded Nanoporous ZrC as an Efficient and Stable Catalyst of the Suzuki Cross-Coupling Reaction [J]. ACS Catalysis, 2020, 10(24): 14366-74.
[35] GUPTA S K, MAO Y. Recent Developments on Molten Salt Synthesis of Inorganic Nanomaterials: A Review [J]. The Journal of Physical Chemistry C, 2021, 125(12): 6508-33.
[36] XIAO M, LUO B, KONAROVA M, et al. Molten Salt Synthesis of Atomic Heterogeneous Catalysts: Old Chemistry for Advanced Materials [J]. European Journal of Inorganic Chemistry, 2020, 2020(31): 2942-9.
[37] ZUNIGA J P, ABDOU M, GUPTA S K, et al. Molten-salt synthesis of complex metal oxide nanoparticles [J]. JOVE-J VIS EXP, 2018, (140).
[38] KAMALI A R. Production of Advanced Materials in Molten Salts [M]//KAMALI A R. Green Production of Carbon Nanomaterials in Molten Salts and Applications. Singapore; Springer Singapore. 2020: 5-18.
[39] ESTRUGA M, GIRARD S N, DING Q, et al. Facile and scalable synthesis of Ti5Si3 nanoparticles in molten salts for metal-matrix nanocomposites [J]. Chemical Communications, 2014, 50(12): 1454-7.
[40] YU H, YANG X, JIANG X, et al. LaNi5.5 particles for reversible hydrogen storage in N-ethylcarbazole [J]. Nano Energy, 2021, 80: 105476.
[41] FU J, HOU Y, LIU X, et al. A construction strategy of ferroelectrics by the molten salt method and its application in the energy field [J]. Journal of Materials Chemistry C, 2020, 8(26): 8704-31.
[42] XIAO X, WANG H, URBANKOWSKI P, et al. Topochemical synthesis of 2D materials [J]. Chemical Society Reviews, 2018, 47(23): 8744-65.
[43] QIU W, LIU Y, YE J, et al. Molten salt synthesis and growth mechanism of WC platelet powders [J]. Powder Technology, 2017, 310: 228-33.
[44] LI T, XU Y, QIAN X, et al. Low-Temperature Molten Salt Synthesis for Ligand-Free Transition Metal Oxide Nanoparticles [J]. ACS Applied Energy Materials, 2020, 3(4): 3984-90.
[45] LIU X, FECHLER N, ANTONIETTI M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures [J]. Chemical Society Reviews, 2013, 42(21): 8237-65.
[46] BOLTERSDORF J, KING N, MAGGARD P A. Flux-mediated crystal growth of metal oxides: synthetic tunability of particle morphologies, sizes, and surface features for photocatalysis research [J]. CrystEngComm, 2015, 17(11): 2225-41.
[47] CHEN X, LIANG C. Transition metal silicides: fundamentals, preparation and catalytic applications [J]. Catalysis Science & Technology, 2019, 9(18): 4785-820.
[48] YANG Z, GU Y, CHEN L, et al. Preparation of Mn5Si3 nanocages and nanotubes by molten salt flux [J]. Solid State Communications, 2004, 130(5): 347-51.
[49] RAMYASHREE M, PRIYA S S, FREUDENBERG N C, et al. Metal-organic framework-based photocatalysts for carbon dioxide reduction to methanol: A review on progress and application [J]. Journal of CO2 Utilization, 2021, 43: 101374.
[50] AL-ROWAILI F N, JAMAL A, BA SHAMMAKH M S, et al. A Review on Recent Advances for Electrochemical Reduction of Carbon Dioxide to Methanol Using Metal–Organic Framework (MOF) and Non-MOF Catalysts: Challenges and Future Prospects [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 15895-914.
[51] MELCHAEVA O, VOYAME P, BASSETTO V C, et al. Electrochemical Reduction of Protic Supercritical CO2 on Copper Electrodes [J]. ChemSusChem, 2017, 10(18): 3660-70.
[52] ZHANG W, HU Y, MA L, et al. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals [J]. Advanced Science, 2018, 5(1): 1700275.
[53] ZHANG W, LIU Y, GUO Z J S A. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering [J]. Science Advances, 2019, 5(5): eaav7412.
[54] MCCOLM I J, WARD J M. Hydrogen sorption properties of D88-type systems: IV. Y5Ge3 and Y5Si3-Y5Ge3 solid solutions [J]. Journal of Alloys and Compounds, 1992, 178(1-2): 91-100.
[55] KANG S H, BANG J, CHUNG K, et al. Water- and acid-stable self-passivated dihafnium sulfide electride and its persistent electrocatalytic reaction [J]. Science advances, 2020, 6(23): eaba7416-eaba.
[56] ZHU J, HU L, ZHAO P, et al. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles [J]. Chemical Reviews, 2020, 120(2): 851-918.
[57] LI Y, XIA J, KHENATA R, et al. Insight into the topological nodal line metal YB2 with large linear energy range: a first-principles study [J]. Materials, 2020, 13(17): 3841.
[58] OZISIK H, DELIGOZ E, COLAKOGLU K, et al. Structural, elastic, and lattice dynamical properties of YB2 compound [J]. Computational Materials Science, 2011, 50(3): 1057-63.
[59] SONG Y, WU X, HU B, et al. Growth of single crystals of YB2 by a flux method [J]. Journal of Crystal Growth, 2001, 223(1-2): 111-5.
[60] 宋觉敏, 刘华, 庞颖. YB2粉末固相反应制备工艺的研究 [J]. 稀有金属与硬质合金, 2015, 43(05): 12-5
[61] BUGARIS D E, ZUR LOYE H C. Materials discovery by flux crystal growth: quaternary and higher order oxides [J]. Angewandte Chemie International Edition, 2012, 51(16): 3780-811.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TB3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335984
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
焦体文. 金属间电子化物纳米颗粒制备及催化性能研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032119-焦体文-材料科学与工程(4455KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[焦体文]的文章
百度学术
百度学术中相似的文章
[焦体文]的文章
必应学术
必应学术中相似的文章
[焦体文]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。