[1] 张莹婷. 《中国制造 2025》解读之: 中国制造 2025, 我国制造强国建设的宏伟蓝图[J]. 工业炉, 2022, 44(1): 1.
[2] 韩爱青. 黄维院士: 柔性电子为” 双碳” 提供路径与支持[J]. 高科技与产业化, 2021, 27(11):4.
[3] 袁晶. 积极应对人口老龄化背景下如何加快养老服务体系建设[J]. 中国社会工作, 2022(2): 3.
[4] ZACHARIAS W J, FRANK D B, ZEPP J A, et al. Regeneration of the lung alveolus by anevolutionarily conserved epithelial progenitor[J]. Nature, 2018, 555(7695): 251-255.
[5] SERENO M I, DIEDRICHSEN J, TACHROUNT M, et al. The human cerebellum has almost 80neocortex[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica, 2020, 117(32): 19538-19543.
[6] DOBRZYNSKA J A, GIJS M A M. Flexible polyimide-based force sensor[J]. Sensors andActuators A: Physical, 2012, 173(1): 127-135.
[7] ROLNICK H. Tension coefficient of resistance of metals[J]. Physical Review, 1930, 36(3):506-512.
[8] REN W, CHEN Y, WANG Z, et al. Electrical contact resistance of coated spherical contacts[J].IEEE Transactions on Electron Devices, 2016, 63(11): 4373-4379.
[9] DUAN L, D’HOOGE D R, CARDON L. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application[J]. Progress in Materials Science, 2020, 114:100617.
[10] CAO M, WANG X, CAO W, et al. Thermally driven transport and relaxation switching selfpowered electromagnetic energy conversion[J]. Small, 2018, 14(29): 1800987.
[11] PRUVOST M, SMIT W J, MONTEUX C, et al. Polymeric foams for flexible and highly sensitive low-pressure capacitive sensors[J]. npj Flexible Electronics, 2019, 3(1): 7.
[12] GRAZ I, KRAUSE M, BAUER-GOGONEA S, et al. Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensingskin[J]. Journal of Applied Physics, 2009, 106(3): 034503.
[13] TAO J, BAO R, WANG X, et al. Self-powered tactile sensor array systems based on the triboelectric effect[J]. Advanced Functional Materials, 2019, 29(41): 1806379.
[14] PREVOST T P, BALAKRISHNAN A, SURESH S, et al. Biomechanics of brain tissue[J]. ActaBiomaterialia, 2011, 7(1): 83-95.
[15] YUK H, LU B, ZHAO X. Hydrogel bioelectronics[J]. Chemical Society Reviews, 2019, 48(6):1642-1667.
[16] YANG C, SUO Z. Hydrogel ionotronics[J]. Nature Reviews Materials, 2018, 3(6): 125-142.
[17] LACOUR S P, COURTINE G, GUCK J. Materials and technologies for soft implantable neuroprostheses[J]. Nature Reviews Materials, 2016, 1(10): 16063.
[18] KEPLINGER C, SUN J Y, FOO CHOON C, et al. Stretchable, transparent, ionic conductors[J]. Science, 2013, 341(6149): 984-987.
[19] WU J, WU Z X, XU H H, et al. An intrinsically stretchable humidity sensor based on anti-drying,self-healing and transparent organohydrogels[J]. Materials Horizons, 2019, 6(3): 595-603.
[20] MATSUDA T, KAWAKAMI R, NAMBA R, et al. Mechanoresponsive self-growing hydrogelsinspired by muscle training[J]. Science, 2019, 363(6426): 504-508.
[21] ZHANG S, CHEN Y, LIU H, et al. Room-temperature-formed PEDOT:PSS hydrogels enable injectable, soft, and healable organic bioelectronics[J]. Advanced Materials, 2020, 32(1):e1904752.
[22] WANG Z, WANG J, AYARZA J, et al. Bio-inspired mechanically adaptive materials throughvibration-induced crosslinking[J]. Nature Materials, 2021.
[23] CROGUENNEC T, NAU F, BRULé G. Influence of pH and salts on egg white gelation[J].Journal of Food Science, 2002, 67(2): 608-614.
[24] LANG E R, RHA C. Apparent shear viscosity of native egg white[J]. International Journal ofFood Science and Technology, 1982, 17(5): 595-606.
[25] SANZANA E S, NAVARRO M, GINEBRA M P, et al. Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds[J]. Journal ofBiomedical Materials Research Part A, 2014, 102(6): 1767-1773.
[26] CARPENA N T, ABUEVA C D G, PADALHIN A R, et al. Evaluation of egg white ovomucinbased porous scaffold as an implantable biomaterial for tissue engineering[J]. Journal ofBiomedical Materials Research Part B: Applied Biomaterials, 2017, 105(7): 2107-2117.
[27] VAN DEN BERG M, JARA F L, PILOSOF A M R. Performance of egg white and hydroxypropylmethylcellulose mixtures on gelation and foaming[J]. Food Hydrocolloids, 2015, 48:282-291.
[28] NASABI M, LABBAFI M, MOUSAVI M E, et al. Effect of salts and nonionic surfactantson thermal characteristics of egg white proteins[J]. International Journal of Biological Macromolecules, 2017, 102: 970-976.
[29] JALILI-FIROOZINEZHAD S, FILIPPI M, MOHABATPOUR F, et al. Chicken egg white:Hatching of a new old biomaterial[J]. Materials Today, 2020, 40: 193-214.
[30] NIETO-NIETO T V, WANG Y X, OZIMEK L, et al. Effects of partial hydrolysis on structureand gelling properties of oat globular proteins[J]. Food Research International, 2014, 55: 418-425.
[31] NICOLAI T, BRITTEN M, SCHMITT C. β-Lactoglobulin and WPI aggregates: Formation,structure and applications[J]. Food Hydrocolloids, 2011, 25(8): 1945-1962.
[32] KREBS M R H, DEVLIN G L, DONALD A M. Protein particulates: another generic form ofprotein aggregation?[J]. Biophysical Journal, 2007, 92(4): 1336-1342.
[33] CHANG Q, DARABI M A, LIU Y, et al. Hydrogels from natural egg white with extraordinarystretchability, direct-writing 3D printability and self-healing for fabrication of electronic sensorsand actuators[J]. Journal of Materials Chemistry A, 2019, 7(42): 24626-24640.
[34] YANG L, LI H, YAO L, et al. Amyloid-based injectable hydrogel derived from hydrolyzed henegg white lysozyme[J]. ACS Omega, 2019, 4(5): 8071-8080.
[35] CHANG J W, WANG C G, HUANG C Y, et al. Chicken albumen dielectrics in organic fieldeffect transistors[J]. Advanced Materials, 2011, 23(35): 4077-4081.
[36] MARTíN-ALFONSO J E, CUADRI A A, GREINER A. The combined effect of formulationand pH on properties of polyethylene oxide composite fiber containing egg albumen protein[J].International Journal of Biological Macromolecules, 2018, 112: 996-1004.
[37] LIU S, ZHANG H, HU Q, et al. Designing vascular supportive albumen-rich composite bioinkfor organ 3D printing[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020,104: 103642.
[38] GUO L, NIU X, CHEN X, et al. 3D direct writing egg white hydrogel promotes diabetic chronicwound healing via self-relied bioactive property[J]. Biomaterials, 2022, 282: 121406.
[39] ZHANG Y, HU Y, ZHU P, et al. Flexible and highly sensitive pressure sensor based onmicrodome-patterned PDMS forming with assistance of colloid self-assembly and replica technique for wearable electronics[J]. ACS Applied Materials and Interfaces, 2017, 9(41): 35968-35976.
[40] ZHAO S, RAN W, WANG D, et al. 3D dielectric layer enabled highly sensitive capacitivepressure sensors for wearable electronics[J]. ACS Applied Materials and Interfaces, 2020, 12(28): 32023-32030.
[41] ZHANG H Z, TANG Q Y, CHAN Y C. Development of a versatile capacitive tactile sensorbased on transparent flexible materials integrating an excellent sensitivity and a high resolution[J]. AIP Advances, 2012, 2(2): 022112.
[42] GAO Y, YU G, SHU T, et al. 3D-printed coaxial fibers for integrated wearable sensor skin[J].Advanced Materials Technologies, 2019, 4(10): 1900504.
[43] KIM H, KIM G, KIM T, et al. Transparent, flexible, conformal capacitive pressure sensors withnanoparticles[J]. Small, 2018, 14(8): 1703432.
[44] LI M, LIANG J, WANG X, et al. Ultra-sensitive flexible pressure sensor based on microstructured electrode[J]. Sensors, 2020, 20(2).
[45] MANNSFELD S C B, TEE B C K, STOLTENBERG R M, et al. Highly sensitive flexiblepressure sensors with microstructured rubber dielectric layers[J]. Nature Materials, 2010, 9(10): 859-864.
[46] SCHWARTZ G, TEE B C K, MEI J, et al. Flexible polymer transistors with high pressuresensitivity for application in electronic skin and health monitoring[J]. Nature Communications,2013, 4(1): 1859.
[47] TEE B C K, CHORTOS A, DUNN R R, et al. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics[J]. Advanced Functional Materials,2014, 24(34): 5427-5434.
[48] PANG C, KOO J H, NGUYEN A, et al. Highly skin-conformal microhairy sensor for pulsesignal amplification[J]. Advanced Materials, 2015, 27(4): 634-640.
[49] LI T, LUO H, QIN L, et al. Flexible capacitive tactile sensor based on micropatterned dielectriclayer[J]. Small, 2016, 12(36): 5042-5048.
[50] PARK J, LEE Y, BARBEE M H, et al. A hierarchical nanoparticle-in-micropore architecturefor enhanced mechanosensitivity and stretchability in mechanochromic electronic skins[J]. Advanced Materials, 2019, 31(25): 1808148.
[51] LI Z, ZHANG S, CHEN Y, et al. Gelatin methacryloyl-based tactile sensors for medical wearables[J]. Advanced Functional Materials, 2020, 30(49).
[52] WAN Y, QIU Z, HUANG J, et al. Natural plant materials as dielectric layer for highly sensitiveflexible electronic skin[J]. Small, 2018, 14(35).
[53] NIU H, GAO S, YUE W, et al. Highly morphology-controllable and highly sensitive capacitivetactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays fordetection of tiny pressure[J]. Small, 2020, 16(4).
[54] BAI N, WANG L, WANG Q, et al. Graded intrafillable architecture-based iontronic pressuresensor with ultra-broad-range high sensitivity[J]. Nature Communications, 2020, 11(1): 209.
[55] WANG X, GU Y, XIONG Z, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Advanced Materials, 2014, 26(9):1336-1342.
[56] SI Y, WANG X, YAN C, et al. Ultralight biomass-derived carbonaceous nanofibrous aerogelswith superelasticity and high pressure-sensitivity[J]. Advanced Materials, 2016, 28(43): 9512-9518.
[57] REN Y, LIU Z, JIN G, et al. Electric-field-induced gradient ionogels for highly sensitive, broadrange-response, and freeze/heat-resistant ionic fingers[J]. Advanced Materials, 2021, 33(12):e2008486.
[58] LUO J C, LIU T, QIAN K, et al. Continuous curvature change into controllable and responsiveonion-like vesicles by rigid sphere-rod amphiphiles[J]. Acs Nano, 2020, 14(2): 1811-1822.
[59] SHEN Y, XU G, HUANG H, et al. Sequential release of small extracellular vesicles frombilayered thiolated alginate/polyethylene glycol diacrylate hydrogels for scarless wound healing[J]. ACS Nano, 2021, 15(4): 6352-6368.
[60] FRAZIER S, JIANG X Y, BURTON J C. How to make a giant bubble[J]. Physical ReviewFluids, 2020, 5(1).
[61] BRYSON J A. Soap bubbles and solid spheres: Collisions and interactions[D]. 2011.
[62] LHUISSIER H, VILLERMAUX E. Bursting bubble aerosols[J]. Journal of Fluid Mechanics,2012, 696: 5-44.
[63] VISSER C W, AMATO D N, MUELLER J, et al. Architected polymer foams via direct bubblewriting[J]. Advanced Materials, 2019, 31(46): e1904668.
[64] PATSYK A, SIVAN U, SEGEV M, et al. Observation of branched flow of light[J]. Nature,2020, 583(7814): 60-65.
[65] ORATIS A T, BUSH J W M, STONE H A, et al. A new wrinkle on liquid sheets: Turning themechanism of viscous bubble collapse upside down[J]. Science, 2020, 369(6504): 685-688.
[66] LIANG Y, TIAN S, BURLEIGH B. Studies of interactions between water droplet and soap film[J]. IOP Conference Series: Earth and Environmental Science, 2021, 680(1): 012059.
[67] ROUX A, DUCHESNE A, BAUDOIN M. Everlasting bubbles and liquid films resistingdrainage, evaporation, and nuclei-induced bursting[J]. Physical Review Fluids, 2022, 7(1):L011601.
[68] LAWSON R A, ROBINSON A P. Chapter 1 - Overview of materials and processes for lithography[M]//Frontiers of Nanoscience: volume 11 Materials and Processes for Next GenerationLithography. Elsevier, 2016: 1-90.
[69] LIU Z, LIU N, SCHROERS J. Nanofabrication through molding[J]. Progress in MaterialsScience, 2022, 125: 100891.
[70] XIA S, SONG S, GAO G. Robust and flexible strain sensors based on dual physically crosslinked double network hydrogels for monitoring human-motion[J]. Chemical Engineering Journal, 2018, 354: 817-824.
[71] CHAN D, CHIEN J C, AXPE E, et al. Combinatorial polyacrylamide hydrogels for preventingbiofouling on implantable biosensors[J]. Advanced Materials: 2109764.
[72] CHANG Q, HE Y, LIU Y, et al. Transparent protein hydrogels: protein gel phase transition:toward superiorly transparent and hysteresis‐free wearable electronics[J]. Advanced FunctionalMaterials, 2020, 30(27).
[73] LAN L, PING J, XIONG J, et al. Sustainable natural bio-origin materials for future flexibledevices[J]. Advanced Science, 2022: 2200560.
[74] CHEN B, CAO Y, LI Q, et al. Liquid metal-tailored gluten network for protein-based e-skin[J].Nature Communications, 2022, 13(1): 1206.
[75] CAROTENUTO A, DELL’ISOLA M. An experimental verification of saturated salt solutionbased humidity fixed points[J]. International Journal of Thermophysics, 1996, 17(6): 1423-1439.
[76] JALILI-FIROOZINEZHAD S, RAJABI-ZELETI S, MOHAMMADI P, et al. Facile fabricationof egg white macroporous sponges for tissue regeneration[J]. Advanced Healthcare Materials,2015, 4(15): 2281-2290.
[77] HASHEMNEJAD S M, KUNDU S. Probing gelation and rheological behavior of a selfassembled molecular gel[J]. Langmuir, 2017, 33(31): 7769-7779.
[78] ZHENG X, LEE H, WEISGRABER T H, et al. Ultralight, ultrastiff mechanical metamaterials[J]. Science, 2014, 344(6190): 1373-7.
[79] 冯雪. 柔性电子技术[M]. 北京: 科学出版社, 2021: 56-58.
[80] TOOMBS J T, LUITZ M, COOK C C, et al. Volumetric additive manufacturing of silica glasswith microscale computed axial lithography[J]. Science, 2022, 376(6590): 308-312.
[81] WAN Y, QIU Z, HONG Y, et al. A highly sensitive flexible capacitive tactile sensor with sparseand high-aspect-ratio microstructures[J]. Advanced Electronic Materials, 2018, 4(4): 1700586.
[82] ALESSANDRO E, DIMITRIOS V, REBECCA M, et al. 3D microvascularized tissue modelsby laser-based cavitation molding of collagen[J]. Advanced Materials, 2022.
[83] XIONG R, XU R X, HUANG C, et al. Stimuli-responsive nanobubbles for biomedical applications[J]. Chemical Society Reviews, 2021, 50(9): 5746-5776.
[84] XIONG Y, SHEN Y, TIAN L, et al. A flexible, ultra-highly sensitive and stable capacitivepressure sensor with convex microarrays for motion and health monitoring[J]. Nano Energy,2020, 70: 104436
修改评论