中文版 | English
题名

基于微纳立体结构的蛋白凝胶柔性传感器

其他题名
FLEXIBLE PROTEIN GEL SENSOR BASED ONMICRO-NANO THREE-DIMENSIONAL STRUCTURE
姓名
姓名拼音
WANG Meihua
学号
11930193
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
王太宏
导师单位
电子与电气工程系
论文答辩日期
2022-05-14
论文提交日期
2022-06-18
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       柔性传感是柔性电子的重要研究领域之一,具有可拉伸可弯曲、柔软轻薄的优点,因此广泛应用于生理信号监测、医疗器械以及可穿戴设备上。目前大多数柔性传感器的材料缺乏生物兼容性和可降解性,且其用于提升性能的常见微结构如金字塔微锥、微槽以及微半球等,通常使用光刻、化学刻蚀等传统工艺,流程复杂、费时费力、成本高昂。为了简单高效地制备具有微纳立体结构的灵敏柔性传感器,本文提出了以廉价易得、可降解、具有生物兼容性的蛋白凝胶为材料,基于气泡辅助生成的微纳立体结构,快速大面积制备仿生柔性传感器的方案。

       作为信号采集端,柔性传感器始终沿着更低的成本、更好的性能、更高效的工艺等方向发展,本工作从传感器制备的三个要素包括材料、结构、工艺出发,在柔性传感器材料的选择中优先考虑使用廉价易得、来源广泛、有良好群众基础的蛋清材料,通过气泡辅助生成微结构提高柔性传感器性能,采用受生物微结构产生方式启发的无模板微结构制备工艺,可便捷高效制备用于生理健康监测的柔性传感器。

       本文基于气泡辅助在蛋白凝胶中制备微纳立体结构,在无模板的情况下可控地制备出规则的气泡阵列,具有天然微纳立体气泡结构的蛋白凝胶可用作电容型触觉传感器的介电层,实现柔性传感器的功能,传感响应良好且可降解,工艺简单,成本低,这种材料、结构和工艺未来还能扩展出更多的应用,对柔性传感器的研发和推广具有普遍意义。

其他摘要

     Flexible sensors are one of the important research fields of flexible electronics. It has the advantages of being stretchable, bendable, soft and thin, so it is widely used in physiological signal monitoring, medical devices and wearable devices. At present, most flexible materials lack biocompatibility and degradability. Common microstructures used to improve the performance of flexible sensors usually require traditional processes like photolithography and chemical etching, the process is complex, time-consuming, labor-intensive as well as expensive. In order to simply and efficiently fabricate sensitive and flexible sensors with micro-nano structures, this thesis proposes a micro-nano three-dimensional structure based on bubble-assisted using biocompatible, degradable, cheap and easily available protein gel material.

     As a signal acquisition, flexible sensors have always been developed in the direction of lower cost, better performance, and more efficient processes. This work starts from the three elements of sensor including material, structure, and process. In the selection of flexible sensor materials, priority should be given to the use of egg white materials that are cheap, widely available. To improve the performance of flexible sensors, microstructures are generated with assistant of bubble, and we apply template-free microstructures inspired by biological microstructure generation methods. The technology can conveniently and efficiently prepare flexible sensors for physiological health monitoring.

     In this thesis, regular bubble arrays can be controllably fabricated without templates, and protein gels with micro-nano three-dimensional bubble structures are used to improve the functions of flexible sensors and complete physiological signal monitoring. The egg white gel flexible sensor based on the bubble structure has the advantages of natural micro-nano three-dimensional structure, good sensing response, degradable, simple process and low cost. Material, structure and process mentioned in this thesis can be extended to more applications in the future, which is of general significance for the development and promotion of flexible sensors.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] 张莹婷. 《中国制造 2025》解读之: 中国制造 2025, 我国制造强国建设的宏伟蓝图[J]. 工业炉, 2022, 44(1): 1.
[2] 韩爱青. 黄维院士: 柔性电子为” 双碳” 提供路径与支持[J]. 高科技与产业化, 2021, 27(11):4.
[3] 袁晶. 积极应对人口老龄化背景下如何加快养老服务体系建设[J]. 中国社会工作, 2022(2): 3.
[4] ZACHARIAS W J, FRANK D B, ZEPP J A, et al. Regeneration of the lung alveolus by anevolutionarily conserved epithelial progenitor[J]. Nature, 2018, 555(7695): 251-255.
[5] SERENO M I, DIEDRICHSEN J, TACHROUNT M, et al. The human cerebellum has al￾most 80neocortex[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica, 2020, 117(32): 19538-19543.
[6] DOBRZYNSKA J A, GIJS M A M. Flexible polyimide-based force sensor[J]. Sensors andActuators A: Physical, 2012, 173(1): 127-135.
[7] ROLNICK H. Tension coefficient of resistance of metals[J]. Physical Review, 1930, 36(3):506-512.
[8] REN W, CHEN Y, WANG Z, et al. Electrical contact resistance of coated spherical contacts[J].IEEE Transactions on Electron Devices, 2016, 63(11): 4373-4379.
[9] DUAN L, D’HOOGE D R, CARDON L. Recent progress on flexible and stretchable piezore￾sistive strain sensors: From design to application[J]. Progress in Materials Science, 2020, 114:100617.
[10] CAO M, WANG X, CAO W, et al. Thermally driven transport and relaxation switching self￾powered electromagnetic energy conversion[J]. Small, 2018, 14(29): 1800987.
[11] PRUVOST M, SMIT W J, MONTEUX C, et al. Polymeric foams for flexible and highly sen￾sitive low-pressure capacitive sensors[J]. npj Flexible Electronics, 2019, 3(1): 7.
[12] GRAZ I, KRAUSE M, BAUER-GOGONEA S, et al. Flexible active-matrix cells with selec￾tively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensingskin[J]. Journal of Applied Physics, 2009, 106(3): 034503.
[13] TAO J, BAO R, WANG X, et al. Self-powered tactile sensor array systems based on the tribo￾electric effect[J]. Advanced Functional Materials, 2019, 29(41): 1806379.
[14] PREVOST T P, BALAKRISHNAN A, SURESH S, et al. Biomechanics of brain tissue[J]. ActaBiomaterialia, 2011, 7(1): 83-95.
[15] YUK H, LU B, ZHAO X. Hydrogel bioelectronics[J]. Chemical Society Reviews, 2019, 48(6):1642-1667.
[16] YANG C, SUO Z. Hydrogel ionotronics[J]. Nature Reviews Materials, 2018, 3(6): 125-142.
[17] LACOUR S P, COURTINE G, GUCK J. Materials and technologies for soft implantable neu￾roprostheses[J]. Nature Reviews Materials, 2016, 1(10): 16063.
[18] KEPLINGER C, SUN J Y, FOO CHOON C, et al. Stretchable, transparent, ionic conductors[J]. Science, 2013, 341(6149): 984-987.
[19] WU J, WU Z X, XU H H, et al. An intrinsically stretchable humidity sensor based on anti-drying,self-healing and transparent organohydrogels[J]. Materials Horizons, 2019, 6(3): 595-603.
[20] MATSUDA T, KAWAKAMI R, NAMBA R, et al. Mechanoresponsive self-growing hydrogelsinspired by muscle training[J]. Science, 2019, 363(6426): 504-508.
[21] ZHANG S, CHEN Y, LIU H, et al. Room-temperature-formed PEDOT:PSS hydrogels enable injectable, soft, and healable organic bioelectronics[J]. Advanced Materials, 2020, 32(1):e1904752.
[22] WANG Z, WANG J, AYARZA J, et al. Bio-inspired mechanically adaptive materials throughvibration-induced crosslinking[J]. Nature Materials, 2021.
[23] CROGUENNEC T, NAU F, BRULé G. Influence of pH and salts on egg white gelation[J].Journal of Food Science, 2002, 67(2): 608-614.
[24] LANG E R, RHA C. Apparent shear viscosity of native egg white[J]. International Journal ofFood Science and Technology, 1982, 17(5): 595-606.
[25] SANZANA E S, NAVARRO M, GINEBRA M P, et al. Role of porosity and pore architec￾ture in the in vivo bone regeneration capacity of biodegradable glass scaffolds[J]. Journal ofBiomedical Materials Research Part A, 2014, 102(6): 1767-1773.
[26] CARPENA N T, ABUEVA C D G, PADALHIN A R, et al. Evaluation of egg white ovomucin￾based porous scaffold as an implantable biomaterial for tissue engineering[J]. Journal ofBiomedical Materials Research Part B: Applied Biomaterials, 2017, 105(7): 2107-2117.
[27] VAN DEN BERG M, JARA F L, PILOSOF A M R. Performance of egg white and hydroxypropylmethylcellulose mixtures on gelation and foaming[J]. Food Hydrocolloids, 2015, 48:282-291.
[28] NASABI M, LABBAFI M, MOUSAVI M E, et al. Effect of salts and nonionic surfactantson thermal characteristics of egg white proteins[J]. International Journal of Biological Macro￾molecules, 2017, 102: 970-976.
[29] JALILI-FIROOZINEZHAD S, FILIPPI M, MOHABATPOUR F, et al. Chicken egg white:Hatching of a new old biomaterial[J]. Materials Today, 2020, 40: 193-214.
[30] NIETO-NIETO T V, WANG Y X, OZIMEK L, et al. Effects of partial hydrolysis on structureand gelling properties of oat globular proteins[J]. Food Research International, 2014, 55: 418-425.
[31] NICOLAI T, BRITTEN M, SCHMITT C. β-Lactoglobulin and WPI aggregates: Formation,structure and applications[J]. Food Hydrocolloids, 2011, 25(8): 1945-1962.
[32] KREBS M R H, DEVLIN G L, DONALD A M. Protein particulates: another generic form ofprotein aggregation?[J]. Biophysical Journal, 2007, 92(4): 1336-1342.
[33] CHANG Q, DARABI M A, LIU Y, et al. Hydrogels from natural egg white with extraordinarystretchability, direct-writing 3D printability and self-healing for fabrication of electronic sensorsand actuators[J]. Journal of Materials Chemistry A, 2019, 7(42): 24626-24640.
[34] YANG L, LI H, YAO L, et al. Amyloid-based injectable hydrogel derived from hydrolyzed henegg white lysozyme[J]. ACS Omega, 2019, 4(5): 8071-8080.
[35] CHANG J W, WANG C G, HUANG C Y, et al. Chicken albumen dielectrics in organic field￾effect transistors[J]. Advanced Materials, 2011, 23(35): 4077-4081.
[36] MARTíN-ALFONSO J E, CUADRI A A, GREINER A. The combined effect of formulationand pH on properties of polyethylene oxide composite fiber containing egg albumen protein[J].International Journal of Biological Macromolecules, 2018, 112: 996-1004.
[37] LIU S, ZHANG H, HU Q, et al. Designing vascular supportive albumen-rich composite bioinkfor organ 3D printing[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020,104: 103642.
[38] GUO L, NIU X, CHEN X, et al. 3D direct writing egg white hydrogel promotes diabetic chronicwound healing via self-relied bioactive property[J]. Biomaterials, 2022, 282: 121406.
[39] ZHANG Y, HU Y, ZHU P, et al. Flexible and highly sensitive pressure sensor based onmicrodome-patterned PDMS forming with assistance of colloid self-assembly and replica tech￾nique for wearable electronics[J]. ACS Applied Materials and Interfaces, 2017, 9(41): 35968-35976.
[40] ZHAO S, RAN W, WANG D, et al. 3D dielectric layer enabled highly sensitive capacitivepressure sensors for wearable electronics[J]. ACS Applied Materials and Interfaces, 2020, 12(28): 32023-32030.
[41] ZHANG H Z, TANG Q Y, CHAN Y C. Development of a versatile capacitive tactile sensorbased on transparent flexible materials integrating an excellent sensitivity and a high resolution[J]. AIP Advances, 2012, 2(2): 022112.
[42] GAO Y, YU G, SHU T, et al. 3D-printed coaxial fibers for integrated wearable sensor skin[J].Advanced Materials Technologies, 2019, 4(10): 1900504.
[43] KIM H, KIM G, KIM T, et al. Transparent, flexible, conformal capacitive pressure sensors withnanoparticles[J]. Small, 2018, 14(8): 1703432.
[44] LI M, LIANG J, WANG X, et al. Ultra-sensitive flexible pressure sensor based on microstruc￾tured electrode[J]. Sensors, 2020, 20(2).
[45] MANNSFELD S C B, TEE B C K, STOLTENBERG R M, et al. Highly sensitive flexiblepressure sensors with microstructured rubber dielectric layers[J]. Nature Materials, 2010, 9(10): 859-864.
[46] SCHWARTZ G, TEE B C K, MEI J, et al. Flexible polymer transistors with high pressuresensitivity for application in electronic skin and health monitoring[J]. Nature Communications,2013, 4(1): 1859.
[47] TEE B C K, CHORTOS A, DUNN R R, et al. Tunable flexible pressure sensors using mi￾crostructured elastomer geometries for intuitive electronics[J]. Advanced Functional Materials,2014, 24(34): 5427-5434.
[48] PANG C, KOO J H, NGUYEN A, et al. Highly skin-conformal microhairy sensor for pulsesignal amplification[J]. Advanced Materials, 2015, 27(4): 634-640.
[49] LI T, LUO H, QIN L, et al. Flexible capacitive tactile sensor based on micropatterned dielectriclayer[J]. Small, 2016, 12(36): 5042-5048.
[50] PARK J, LEE Y, BARBEE M H, et al. A hierarchical nanoparticle-in-micropore architecturefor enhanced mechanosensitivity and stretchability in mechanochromic electronic skins[J]. Ad￾vanced Materials, 2019, 31(25): 1808148.
[51] LI Z, ZHANG S, CHEN Y, et al. Gelatin methacryloyl-based tactile sensors for medical wear￾ables[J]. Advanced Functional Materials, 2020, 30(49).
[52] WAN Y, QIU Z, HUANG J, et al. Natural plant materials as dielectric layer for highly sensitiveflexible electronic skin[J]. Small, 2018, 14(35).
[53] NIU H, GAO S, YUE W, et al. Highly morphology-controllable and highly sensitive capacitivetactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays fordetection of tiny pressure[J]. Small, 2020, 16(4).
[54] BAI N, WANG L, WANG Q, et al. Graded intrafillable architecture-based iontronic pressuresensor with ultra-broad-range high sensitivity[J]. Nature Communications, 2020, 11(1): 209.
[55] WANG X, GU Y, XIONG Z, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Advanced Materials, 2014, 26(9):1336-1342.
[56] SI Y, WANG X, YAN C, et al. Ultralight biomass-derived carbonaceous nanofibrous aerogelswith superelasticity and high pressure-sensitivity[J]. Advanced Materials, 2016, 28(43): 9512-9518.
[57] REN Y, LIU Z, JIN G, et al. Electric-field-induced gradient ionogels for highly sensitive, broad￾range-response, and freeze/heat-resistant ionic fingers[J]. Advanced Materials, 2021, 33(12):e2008486.
[58] LUO J C, LIU T, QIAN K, et al. Continuous curvature change into controllable and responsiveonion-like vesicles by rigid sphere-rod amphiphiles[J]. Acs Nano, 2020, 14(2): 1811-1822.
[59] SHEN Y, XU G, HUANG H, et al. Sequential release of small extracellular vesicles frombilayered thiolated alginate/polyethylene glycol diacrylate hydrogels for scarless wound healing[J]. ACS Nano, 2021, 15(4): 6352-6368.
[60] FRAZIER S, JIANG X Y, BURTON J C. How to make a giant bubble[J]. Physical ReviewFluids, 2020, 5(1).
[61] BRYSON J A. Soap bubbles and solid spheres: Collisions and interactions[D]. 2011.
[62] LHUISSIER H, VILLERMAUX E. Bursting bubble aerosols[J]. Journal of Fluid Mechanics,2012, 696: 5-44.
[63] VISSER C W, AMATO D N, MUELLER J, et al. Architected polymer foams via direct bubblewriting[J]. Advanced Materials, 2019, 31(46): e1904668.
[64] PATSYK A, SIVAN U, SEGEV M, et al. Observation of branched flow of light[J]. Nature,2020, 583(7814): 60-65.
[65] ORATIS A T, BUSH J W M, STONE H A, et al. A new wrinkle on liquid sheets: Turning themechanism of viscous bubble collapse upside down[J]. Science, 2020, 369(6504): 685-688.
[66] LIANG Y, TIAN S, BURLEIGH B. Studies of interactions between water droplet and soap film[J]. IOP Conference Series: Earth and Environmental Science, 2021, 680(1): 012059.
[67] ROUX A, DUCHESNE A, BAUDOIN M. Everlasting bubbles and liquid films resistingdrainage, evaporation, and nuclei-induced bursting[J]. Physical Review Fluids, 2022, 7(1):L011601.
[68] LAWSON R A, ROBINSON A P. Chapter 1 - Overview of materials and processes for lithog￾raphy[M]//Frontiers of Nanoscience: volume 11 Materials and Processes for Next GenerationLithography. Elsevier, 2016: 1-90.
[69] LIU Z, LIU N, SCHROERS J. Nanofabrication through molding[J]. Progress in MaterialsScience, 2022, 125: 100891.
[70] XIA S, SONG S, GAO G. Robust and flexible strain sensors based on dual physically cross￾linked double network hydrogels for monitoring human-motion[J]. Chemical Engineering Jour￾nal, 2018, 354: 817-824.
[71] CHAN D, CHIEN J C, AXPE E, et al. Combinatorial polyacrylamide hydrogels for preventingbiofouling on implantable biosensors[J]. Advanced Materials: 2109764.
[72] CHANG Q, HE Y, LIU Y, et al. Transparent protein hydrogels: protein gel phase transition:toward superiorly transparent and hysteresis‐free wearable electronics[J]. Advanced FunctionalMaterials, 2020, 30(27).
[73] LAN L, PING J, XIONG J, et al. Sustainable natural bio-origin materials for future flexibledevices[J]. Advanced Science, 2022: 2200560.
[74] CHEN B, CAO Y, LI Q, et al. Liquid metal-tailored gluten network for protein-based e-skin[J].Nature Communications, 2022, 13(1): 1206.
[75] CAROTENUTO A, DELL’ISOLA M. An experimental verification of saturated salt solution￾based humidity fixed points[J]. International Journal of Thermophysics, 1996, 17(6): 1423-1439.
[76] JALILI-FIROOZINEZHAD S, RAJABI-ZELETI S, MOHAMMADI P, et al. Facile fabricationof egg white macroporous sponges for tissue regeneration[J]. Advanced Healthcare Materials,2015, 4(15): 2281-2290.
[77] HASHEMNEJAD S M, KUNDU S. Probing gelation and rheological behavior of a self￾assembled molecular gel[J]. Langmuir, 2017, 33(31): 7769-7779.
[78] ZHENG X, LEE H, WEISGRABER T H, et al. Ultralight, ultrastiff mechanical metamaterials[J]. Science, 2014, 344(6190): 1373-7.
[79] 冯雪. 柔性电子技术[M]. 北京: 科学出版社, 2021: 56-58.
[80] TOOMBS J T, LUITZ M, COOK C C, et al. Volumetric additive manufacturing of silica glasswith microscale computed axial lithography[J]. Science, 2022, 376(6590): 308-312.
[81] WAN Y, QIU Z, HONG Y, et al. A highly sensitive flexible capacitive tactile sensor with sparseand high-aspect-ratio microstructures[J]. Advanced Electronic Materials, 2018, 4(4): 1700586.
[82] ALESSANDRO E, DIMITRIOS V, REBECCA M, et al. 3D microvascularized tissue modelsby laser-based cavitation molding of collagen[J]. Advanced Materials, 2022.
[83] XIONG R, XU R X, HUANG C, et al. Stimuli-responsive nanobubbles for biomedical applications[J]. Chemical Society Reviews, 2021, 50(9): 5746-5776.
[84] XIONG Y, SHEN Y, TIAN L, et al. A flexible, ultra-highly sensitive and stable capacitivepressure sensor with convex microarrays for motion and health monitoring[J]. Nano Energy,2020, 70: 104436

所在学位评定分委会
电子与电气工程系
国内图书分类号
TP212.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335987
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
王玫骅. 基于微纳立体结构的蛋白凝胶柔性传感器[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930193-王玫骅-电子与电气工程(29695KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王玫骅]的文章
百度学术
百度学术中相似的文章
[王玫骅]的文章
必应学术
必应学术中相似的文章
[王玫骅]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。