中文版 | English
题名

SABR模型数值模拟方法比较

其他题名
COMPARISON OF NUMERICAL SIMULATION METHODS FOR THE SABR MODEL
姓名
姓名拼音
HUANG Haiyang
学号
12032876
学位类型
硕士
学位专业
070103 概率论与数理统计
学科门类/专业学位类别
07 理学
导师
曾萍萍
导师单位
数学系
论文答辩日期
2022-05-08
论文提交日期
2022-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

SABR 模型在金融领域被广泛使用,但由于该模型结构复杂,我们无法获得解析表达式解决该模型下金融衍生品的定价问题。因此大多数对SABR模型的研究通过探究数值模拟方法以解决相关问题。对于SABR 模型的数值模拟,可以依据弹性参数β的取值分类讨论。当 β = 1 或者 β < 1 并且标的物远期价格过程和波动率过程瞬时不相关(即 ρ = 0)时, CaiSongChen提出了精确模拟方法。因此本文关注于 β < 1ρ=0 且标的物远期价格 Ft 0 处为吸收边界的情况进行模拟并对模拟结果进行比较,通过大量模拟路径数多组模拟参数的数值实验,从各种模拟方法结果的准确性、均方根误差的收敛性,模拟的时间等角度上比较各种模拟方法。

模拟的方法上我们使用了 Euler 方法、精确模拟方法、以及本文在精确模拟的基础上修改过后的无偏模拟方法。数值实验部分我们分别对欧式期权和远期起点期权进行模拟定价。在对欧式期权进行定价的部分,我们加入了计算隐含波动率得到 B-S-M 价格的结果和条件模拟方法的结果,与三种模拟方法的结果进行比对。

数值实验的结果表明,当到期日T或者波动率过程的波动率 ν 较大时,隐含波动率渐进展开式的结果就会产生偏差。Euler 方法容易实现,但想要得到较为精确的结果,需要增加模拟路径数和模拟步数,需要花费大量的计算时间。条件模拟方法结果准确,并且能显著降低模拟结果的方差,但该方法只能用于欧式期权定价。精确模拟方法和无偏模拟方法能够模拟得到标的物远期价格,适用于各种衍生品的定价问题,相比 Euler 方法仅需较少的模拟路径数就能得到准确的结果。相较于精确模拟方法,无偏模拟方法在模拟时间上更有优势。

其他摘要

The SABR model is widely used in the financial field. However, due to its complex structure, we cannot obtain analytical expressions to solve the pricing problem of financial derivatives under the SABR model. Most of the research on SABR model has been focused on exploring numerical simulation methods to solve related problems. The numerical simulation of the SABR model can be discussed based on the classification of the values of the elasticity parameter β. When β = 1 or β < 1 and the forward price of the underlying is instantaneously uncorrelated with the volatility process(i.e., ρ = 0), Cai, Song, and Chen proposed an exact simulation method. Therefore, we focuses on the situation where β < 1, ρ = 0 and the forward price of the underlying Ft at 0 with an absorbing boundary condition. For numerical experiments, we simulate multiple sets of parameters with a lot of paths. We compare various simulation methods from the perspectives of the accuracy, convergence of the results' root mean square errors, and the simulation time.

We use the Euler method, the exact simulation method, and the unbiased simulation method modified from the exact simulation method. For the numerical experiments, we simulate the prices of European options and forward starting options. In the section of pricing European options, we add the results of the implied volatility calculation to obtain the B-S-M price and the conditional simulation method to compare with the results of the three simulation methods.

The results of the numerical experiments show that the implied volatility asymptotic expansion formula is biased when the maturity T or the volatility ν of the volatility process is large. The Euler method is easy to implement, but to obtain more accurate results, we need to increase the number of simulation paths and the simulation steps, which takes a lot of computational time. The conditional simulation method gives accurate results and significantly reduces the variance of the simulation results, but it can only be used for pricing European options. The exact simulation method and the unbiased simulation method are able to simulate forward prices of the underlying, thus they can be used for pricing variety of derivatives. The unbiased simulation method is more efficient than the exact simulation method.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1] HULL J C. Options futures and other derivatives[M]. Pearson Education India, 2003: 321-353.
[2] DUPIRE B. Pricing with a smile[J]. Risk, 1994, 7(1): 18-20.
[3] DERMAN E, KANI I. Riding on a Smile[J]. Risk, 1994, 7: 32-39.
[4] HESTON S L. A closed-form solution for options with stochastic volatility with applications to bond and currency options[J]. The review of financial studies, 1993, 6(2): 327-343.
[5] HAGAN P, KUMAR D, LESNIEWSKI A, et al. Managing Smile Risk[J]. Wilmott Magazine, 2002, 1: 84-108.
[6] HAGAN P S, LESNIEWSKI A S, WOODWARD D E. Implied volatility formulas for Heston models[J]. Wilmott, 2018, 2018(98): 44-57.
[7] WASOW W R. On boundary layer problems in the theory of ordinary differential equation[M]. New York University, 1942: 1-20.
[8] OBLOJ J. Fine-Tune Your Smile: Correction to Hagan et al[J]. arXiv.org, Quantitative Finance Papers, 2007, 35: 102-104.
[9] BERESTYCKI H, BUSCA J, FLORENT I. Computing the implied volatility in stochastic volatility models[J]. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 2004, 57(10): 1352-1373.
[10] HENRY-LABORDERE P. A geometric approach to the asymptotics of implied volatility[J]. Frontiers in Quantitative Finance, 2008: 89.
[11] PAULOT L. Asymptotic implied volatility at the second order with application to the SABR model[J]. Springer Proceedings in Mathematics and Statistics, 2015: 37–69.
[12] WU Q. Series expansion of the SABR joint density[J]. Mathematical Finance, 2012, 22(2): 310-345.
[13] ANTONOV A, SPECTOR M. Advanced analytics for the SABR model[J]. Available at SSRN 2026350, 2012: 1-58.
[14] ANTONOV A, KONIKOV M, SPECTOR M. SABR spreads its wings[J]. Risk, 2013, 26(8): 58.
[15] GLASSERMAN P. Monte Carlo methods in financial engineering[M]. New York: Springer, 2004: 339-376.
[16] BROADIE M, KAYA Ö. Exact simulation of stochastic volatility and other affine jump diffusion processes[J]. Operations Research, 2006, 54(2): 217-231.
[17] CAI N, SONG Y, CHEN N. Exact simulation of the SABR model[J]. Operations Research, 2017, 65(4): 931-951.
[18] ISLAH O. Solving SABR in exact form and unifying it with LIBOR market model[J]. SSRN Electronic Journal, 2009: 9-10.
[19] SHEPPARD R. Pricing equity derivatives under stochastic volatility: A partial differential equation approach[D]. University of the Witwatersrand, 2007: 35-119.
[20] CARR P, LINETSKY V. A jump to default extended CEV model: An application of Bessel processes[J]. Finance and Stochastics, 2006, 10(3): 303-330.
[21] CUI Z, KIRKBY J L, NGUYEN D. Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations[J]. European Journal of Opera- tional Research, 2021, 290(3): 1046-1062.
[22] CUI Z, KIRKBY J L, NGUYEN D. A general valuation framework for SABR and stochastic local volatility models[J]. SIAM Journal on Financial Mathematics, 2018, 9(2): 520-563.
[23] ANDERSEN L B. Efficient simulation of the Heston stochastic volatility model[J]. Available at SSRN 946405, 2007: 5-17.
[24] ITÔ K. 109. stochastic integral[J]. Proceedings of the Imperial Academy, 1944, 20(8): 519-524.
[25] COX J. Notes on option pricing I: Constant elasticity of variance diffusions[J]. Unpublished note, Stanford University, Graduate School of Business, 1975.
[26] REVUZ D, YOR M. Continuous martingales and Brownian motion: volume 293[M]. Springer Science & Business Media, 2013.
[27] SCHRODER M. Computing the constant elasticity of variance option pricing formula[J]. the Journal of Finance, 1989, 44(1): 211-219.
[28] COX J C, INGERSOLL J E, ROSS S A. A Theory of the Term Structure of Interest Rates[J]. Econometrica, 1985, 53(2): 385-407.
[29] ATTARI M. Option pricing using Fourier transforms: A numerically efficient simplification[J]. Available at SSRN 520042, 2004: 1-7.
[30] BORODIN A N, SALMINEN P. Handbook of Brownian motion-facts and formulae[M].Springer Science & Business Media, 2015: 333-372.
[31] DUFFIE D, GLYNN P. Efficient Monte Carlo simulation of security prices[J]. The Annals of Applied Probability, 1995: 897-905.
[32] YOR M. Loi de l’indice du lacet Brownien, et distribution de Hartman-Watson[J]. Zeitschriftfür Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1980, 53: 71-95.
[33] BARRIEU P, ROUAULT A, YOR M. A study of the Hartman-Watson distribution motivated by numerical problems related to the pricing of asian options[J]. Journal of Applied Probability, 2004, 41(4): 1049-1058.
[34] YOR M. On some Exponential functionals of Brownian motion[J]. Advances in Applied Probability, 1992, 24(3): 509-531.
[35] BOYLE P, POTAPCHIK A. Application of high-precision computing for pricing arithmeticasian options[C]//Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation. Genoa, Italy: Association for Computing Machinery, 2006: 39–46.
[36] MATSUMOTO H, YOR M. Exponential functionals of Brownian motion, I: Probability laws at fixed time[J]. Probability Surveys, 2005, 2: 312 - 347.
[37] ABATE J, WHITT W. The Fourier-Series method For inverting transforms of probability distributions[J]. Queuing Systems, 2000, 10.
[38] LARGUINHO M, DIAS J, BRAUMANN C. Speed and accuracy comparison of noncentral Chi-Square distribution methods for option pricing and hedging under the CEV model[Z]. 2011: 3-7.
[39] DING C G. Algorithm AS 275: Computing the Non-Central χ2 distribution function[J]. Journal of the Royal Statistical Society. Series C (Applied Statistics), 1992, 41(2): 478-482.
[40] PENEV S, RAYKOV T. A Wiener Germ approximation of the noncentral Chi Square distribution and of its quantiles[J]. Computational Statistics, 1997, 15.
[41] DYRTING S. Evaluating the noncentral Chi-Square distribution for the Cox-Ingersoll-Ross process[J]. Computational Economics, 2004, 24: 35-50.
[42] JOHNSON N L, KOTZ S, BALAKRISHNAN N. Continuous univariate distributions, volume 2: volume 289[M]. John wiley & sons, 1995: 439-470.

所在学位评定分委会
数学系
国内图书分类号
O211.9
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335993
专题理学院_数学系
推荐引用方式
GB/T 7714
黄海洋. SABR模型数值模拟方法比较[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032876-黄海洋-数学系.pdf(1504KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄海洋]的文章
百度学术
百度学术中相似的文章
[黄海洋]的文章
必应学术
必应学术中相似的文章
[黄海洋]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。