[1] DAI X, ZHANG Z, JIN Y, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature, 2014, 515(7525): 96-99.
[2] WON Y H, CHO O, KIM T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes[J]. Nature, 2019, 575(7784): 634-638.
[3] PAL B N, ROBEL I, MOHITE A, et al. High-sensitivity p-n junction photodiodes based on PbS nanocrystal quantum dots[J]. Advanced Functional Materials, 2012, 22(8): 1741-1748.
[4] TAN Z, ZHANG F, ZHU T, et al. Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots[J]. Nano Letters, 2007, 7(12): 3803-3807.
[5] SHEN H, CAO W, SHEWMON N T, et al. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes[J]. Nano Letters, 2015, 15(2): 1211-1216.
[6] MEDINTZ I L, UYEDA H T, GOLDMAN E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nature Materials, 2005, 4(6): 435-446.
[7] KAGAN C R, LIFSHITZ E, SARGENT E H, et al. Building devices from colloidal quantum dots[J]. Science, 2016, 353(6302): aac5523.
[8] KIM J H, JO D Y, LEE K H, et al. White electroluminescent lighting device based on a single quantum dot emitter[J]. Advanced Materials, 2016, 28(25): 5093-5098.
[9] WANG R, SHANG Y, KANJANABOOS P, et al. Colloidal quantum dot ligand engineering for high performance solar cells[J]. Energy & Environmental Science, 2016, 9(4): 1130-1143.
[10] LI X, ZHAO Y B, FAN F, et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination[J]. Nature Photonics, 2018, 12(3): 159-164.
[11] LEE K H, LEE J H, KANG H D, et al. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots[J]. ACS Nano, 2014, 8(5): 4893-4901.
[12] RHEE S, CHANG J H, HAHM D, et al. Tailoring the electronic landscape of quantum dot light-emitting diodes for high brightness and stable operation[J]. ACS Nano, 2020, 14(12): 17496-17504.
[13] ROSSETTI R, NAKAHARA S, BRUS L E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution[J]. The Journal of Chemical Physics, 1983, 79(2): 1086-1088.
[14] JI W, LIU S, ZHANG H, et al. Ultrasonic spray processed, highly efficient all-inorganic quantum-dot light-emitting diodes[J]. ACS Photonics, 2017, 4(5): 1271-1278.
[15] PENG Z A, PENG X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor[J]. Journal of the American Chemical Society, 2001, 123(1): 183-184.
[16] PENG Z A, PENG X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth[J]. Journal of the American Chemical Society, 2002, 124(13): 3343-3353.
[17] DABBOUSI B O, RODRIGUEZ-VIEJO J, MIKULEC F V, et al. (CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites[J]. The Journal of Physical Chemistry B, 1997, 101(46): 9463-9475.
[18] CHEN O, ZHAO J, CHAUHAN V P, et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking[J]. Nature Materials, 2013, 12(5): 445-451.
[19] REISS P, CARRIERE M, LINCHENEAU C, et al. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials[J]. Chemical reviews, 2016, 116(18): 10731-10819.
[20] BAE W K, KWAK J, PARK J W, et al. Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient[J]. Advanced Materials, 2009, 21(17): 1690-1694.
[21] ZOU Y, BAN M, CUI W, et al. A general solvent selection strategy for solution processed quantum dots targeting high performance light-emitting diode[J]. Advanced Functional Materials, 2017, 27(1): 1603325.
[22] EFROS A L, EFROS A L. Interband absorption of light in a semiconductor sphere[J]. Soviet physics Semiconductors, 1982, 16(7): 772-775.
[23] WANG Y, HERRON N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties[J]. The Journal of Physical Chemistry, 1991, 95(2): 525-532.
[24] WANG X, SUN G, LI N, et al. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy[J]. Chemical Society Reviews, 2016, 45(8): 2239-2262.
[25] HINES M A, SCHOLES G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution[J]. Advanced Materials, 2003, 15(21): 1844-1849.
[26] LEE J, SUNDAR V C, HEINE J R, et al. Full color emission from II-VI semiconductor quantum dot-polymer composites[J]. Advanced Materials, 2000, 12(15): 1102-1105.
[27] MOREELS I, JUSTO Y, GEYTER B D, et al. Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study[J]. ACS Nano, 2011, 5(3): 2004-2012.
[28] SHIRASAKI Y, SUPRAN G J, BAWENDI M G, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature Photonics, 2013, 7(1): 13-23.
[29] WANG H C, LIN S Y, TANG A C, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display[J]. Angewandte Chemie International Edition, 2016, 55(28): 7924-7929.
[30] SUN Y, SU Q, ZHANG H, et al. Investigation on thermally induced efficiency roll-off: toward efficient and ultrabright quantum-dot light-emitting diodes[J]. ACS Nano, 2019, 13(10): 11433-11442.
[31] BAE W K, PARK Y S, LIM J, et al. Controlling the influence of auger recombination on the performance of quantum-dot light-emitting diodes[J]. Nature Communications, 2013, 4(1): 1038.
[32] OTTO T, MVLLER M, MUNDRA P, et al. Colloidal nanocrystals embedded in macrocrystals: Robustness, photostability, and color purity[J]. Nano Letters, 2012, 12(10): 5348-5354.
[33] ZHANG F, WANG S, WANG L, et al. Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets[J]. Nanoscale, 2016, 8(24): 12182-12188.
[34] DENG Y, LIN X, FANG W, et al. Deciphering exciton-generation processes in quantum-dot electroluminescence[J]. Nature Communications, 2020, 11(1): 2309.
[35] BURROWS P E, BULOVIC V, FORREST S R, et al. Reliability and degradation of organic light emitting devices[J]. Applied Physics Letters, 1994, 65(23): 2922-2924.
[36] COE S, WOO W K, BAWENDI M, et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices[J]. Nature, 2002, 420(6917): 800-803.
[37] CARUGE J M, HALPERT J E, BULOVIĆ V, et al. NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices[J]. Nano Letters, 2006, 6(12): 2991-2994.
[38] QIAN L, ZHENG Y, XUE J, et al. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures[J]. Nature Photonics, 2011, 5(9): 543-548.
[39] ZHANG H, SUN X, CHEN S. Over 100 cd A-1 efficient quantum dot light-emitting diodes with inverted tandem structure[J]. Advanced Functional Materials, 2017, 27(21): 1700610.
[40] ZHANG H, CHEN S, SUN X W. Efficient red/green/blue tandem quantum-dot light-emitting diodes with external quantum efficiency exceeding 21%[J]. ACS Nano, 2018, 12(1): 697-704.
[41] WANG O, WANG L, LI Z, et al. High-efficiency, deep blue ZnCdS/Cd x Zn 1-x S/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18%[J]. Nanoscale, 2018, 10(12): 5650-5657.
[42] SONG J, WANG O, SHEN H, et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer[J]. Advanced Functional Materials, 2019, 29(33): 1808377.
[43] YANG Z, WU Q, LIN G, et al. All-solution processed inverted green quantum dot light-emitting diodes with concurrent high efficiency and long lifetime[J]. Materials Horizons, 2019, 6(10): 2009-2015.
[44] LI X, LIN Q, SONG J, et al. Quantum-dot light-emitting diodes for outdoor displays with high stability at high brightness[J]. Advanced Optical Materials, 2020, 8(2): 1901145.
[45] PU C, DAI X, SHU Y, et al. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots[J]. Nature Communications, 2020, 11(1): 937.
[46] QIAN L, ZHENG Y, XUE J, et al. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures[J]. Nature Photonics, 2011, 5(9): 543-548.
[47] SHEN H, GAO Q, ZHANG Y, et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency[J]. Nature Photonics, 2019, 13(3): 192-197.
[48] CHEN S, CAO W, LIU T, et al. On the degradation mechanisms of quantum-dot light-emitting diodes[J]. Nature Communications, 2019, 10(1): 765.
[49] ANANDAN M. Progress of LED backlights for LCDs[J]. Journal of the society for information display, 2008, 16(2): 287-310.
[50] COE-SULLIVAN S, LIU W, ALLEN P, et al. Quantum dots for LED downconversion in display applications[J]. ECS Journal of Solid State Science and Technology, 2012, 2(2): R3026.
[51] SEKITANI T, NAKAJIMA H, MAEDA H, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors[J]. Nature Materials, 2009, 8(6): 494-499.
[52] DAI X, DENG Y, PENG X, et al. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization[J]. Advanced Materials, 2017, 29(14): 1607022.
[53] WOOD V, PANZER M J, CHEN J, et al. Inkjet-printed quantum dot-polymer composites for full-color ac-driven displays[J]. Advanced Materials, 2009, 21(21): 2151-2155.
[54] ZHENG H, ZHENG Y, LIU N, et al. All-solution processed polymer light-emitting diode displays[J]. Nature Communications, 2013, 4(1): 1971.
[55] KIM B H, ONSES M S, LIM J B, et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes[J]. Nano Letters, 2015, 15(2): 969-973.
[56] JIANG C, ZHONG Z, LIU B, et al. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices[J]. ACS Applied Materials & Interfaces, 2016, 8(39): 26162-26168.
[57] LIU Y, LI F, XU Z, et al. Efficient all-solution processed quantum dot light emitting diodes based on inkjet printing technique[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25506-25512.
[58] YANG P, ZHANG L, KANG D J, et al. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays[J]. Advanced Optical Materials, 2020, 8(1): 1901429.
[59] ROH H, KO D, SHIN D Y, et al. Enhanced performance of pixelated quantum dot light-emitting diodes by inkjet printing of quantum dot-polymer composites[J]. Advanced Optical Materials, 2021, 9(11): 2002129.
[60] KIM L A, ANIKEEVA P O, COE-SULLIVAN S A, et al. Contact printing of quantum dot light-emitting devices[J]. Nano Letters, 2008, 8(12): 4513-4517.
[61] KIM T H, CHO K S, LEE E K, et al. Full-colour quantum dot displays fabricated by transfer printing[J]. Nature Photonics, 2011, 5(3): 176-182.
[62] SUNG S H, YOON H, LIM J, et al. Reusable stamps for printing sub-100 nm patterns of functional nanoparticles[J]. Small, 2012, 8(6): 826-831.
[63] KIM T H, CHUNG D Y, KU J Y, et al. Heterogeneous stacking of nanodot monolayers by dry pick-and-place transfer and its applications in quantum dot light-emitting diodes[J]. Nature Communications, 2013, 4(1): 2637.
[64] CHOI M K, YANG J, KANG K, et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing[J]. Nature Communications, 2015, 6(1): 7149.
[65] NAM T W, KIM M, WANG Y, et al. Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution[J]. Nature Communications, 2020, 11(1): 3040.
[66] PARK J S, KYHM J, KIM H H, et al. Alternative patterning process for realization of large-area, full-color, active quantum dot display[J]. Nano Letters, 2016, 16(11): 6946-6953.
[67] WANG Y, FEDIN I, ZHANG H, et al. Direct optical lithography of functional inorganic nanomaterials[J]. Science, 2017, 357(6349): 385-388.
[68] CHO H, PAN J A, WU H, et al. Direct optical patterning of quantum dot light-emitting diodes via in situ ligand exchange[J]. Advanced Materials, 2020, 32(46): 2003805.
[69] YANG J, HAHM D, KIM K, et al. High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking[J]. Nature Communications, 2020, 11(1): 2874.
[70] ZHAO J, CHEN L, LI D, et al. Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition[J]. Nature Communications, 2021, 12(1): 4603.
[71] SONG K W, COSTI R, BULOVIĆ V. Electrophoretic deposition of CdSe/ZnS quantum dots for light-emitting devices[J]. Advanced Materials, 2013, 25(10): 1420-1423.
[72] HAN C W, TAK Y H, AHN B C. 15-in. RGBW panel using two-stacked white OLED and color filters for large-sized display applications[J]. Journal of the Society for Information Display, 2011, 19(2): 190-195.
[73] ISHIBASHI T, YAMADA J, HIRANO T, et al. Active matrix organic light emitting diode display based on “Super Top Emission” technology[J]. Japanese Journal of Applied Physics, 2006, 45(5S): 4392.
[74] LEE B, JU Y, HWANG Y I, et al. Micro-cavity design of bottom-emitting AMOLED with white OLED and RGBW color filters for 100% color gamut[J]. Journal of the Society for Information Display, 2009, 17(2): 151-157.
[75] KASHIWABARA M, YAMADA J, YOKOYAMA S, et al. Display unit, method of manufacturing same, organic light emitting unit, and method of manufacturing same: U.S. Patent 7,973,319[P]. 2011-7-5.
[76] WINTERS D L. Oled microcavity subpixels and color filter elements: U.S. Patent 7,180,238[P]. 2007-2-20.
[77] ZHANG W, LIU H, SUN R. Full color organic light-emitting devices with microcavity structure and color filter[J]. Optics Express, 2009, 17(10): 8005-8011.
[78] JOO W J, KYOUNG J, ESFANDYARPOUR M, et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch[J]. Science, 2020, 370(6515): 459-463.
[79] ANIKEEVA P O, HALPERT J E, BAWENDI M G, et al. Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer[J]. Nano Letters, 2007, 7(8): 2196-2200.
[80] BAE W K, LIM J, LEE D, et al. R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices[J]. Advanced Materials, 2014, 26(37): 6387-6393.
[81] LEE K H, HAN C Y, JANG E P, et al. Full-color capable light-emitting diodes based on solution-processed quantum dot layer stacking[J]. Nanoscale, 2018, 10(14): 6300-6305.
[82] ZHENG K, ZIDEK K, ABDELLAH M, et al. Directed energy transfer in films of CdSe quantum dots: Beyond the point dipole approximation[J]. Journal of the American Chemical Society, 2014, 136(17): 6259-6268.
[83] LEE K H, HAN C Y, KANG H D, et al. Highly efficient, color-reproducible full-color electroluminescent devices based on red/green/blue quantum dot-mixed multilayer[J]. ACS Nano, 2015, 9(11): 10941-10949.
[84] ZHANG H, SU Q, SUN Y, et al. Efficient and color stable white quantum-dot light-emitting diodes with external quantum efficiency over 23%[J]. Advanced Optical Materials, 2018, 6(16): 1800354.
[85] LIN C L, LIN H W, WU C C. Examining microcavity organic light-emitting devices having two metal mirrors[J]. Applied Physics Letters, 2005, 87(2): 021101.
[86] JORDAN R H, DODABALAPUR A, SLUSHER R E. Efficiency enhancement of microcavity organic light emitting diodes[J]. Applied Physics Letters, 1996, 69(14): 1997-1999.
[87] JUNG B Y, KIM N Y, LEE C, et al. Control of resonant wavelength from organic light-emitting materials by use of a Fabry-Perot microcavity structure[J]. Applied Optics, 2002, 41(16): 3312-3318.
[88] LIU G, ZHOU X, CHEN S. Very bright and efficient microcavity top-emitting quantum dot light-emitting diodes with Ag electrodes[J]. ACS Applied Materials & Interfaces, 2016, 8(26): 16768-16775.
[89] ITO N, SATO Y, SONG P K, et al. Electrical and optical properties of amorphous indium zinc oxide films[J]. Thin Solid Films, 2006, 496(1): 99-103.
[90] ZHANG H, SU Q, CHEN S. Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission[J]. Nature Communications, 2020, 11(1): 2826.
[91] KIM S K, PARK M J, LAMPANDE R, et al. Primary color generation from white organic light-emitting diodes using a cavity control layer for AR/VR applications[J]. Organic Electronics, 2020, 87: 105938.
[92] BENISTY H, DE NEVE H, WEISBUCH C. Impact of planar microcavity effects on light extraction-Part I: Basic concepts and analytical trends[J]. IEEE Journal of Quantum Electronics, 1998, 34(9): 1612-1631.
[93] BULOVIĆ V, KHALFIN V B, GU G, et al. Weak microcavity effects in organic light-emitting devices[J]. Physical Review B, 1998, 58(7): 3730.
[94] NEYTS K A. Simulation of light emission from thin-film microcavities[J]. Journal of the Optical Society of America, 1998, 15(4): 962-971.
[95] CHO H, CHUNG J, SONG J, et al. Importance of purcell factor for optimizing structure of organic light-emitting diodes[J]. Optics Express, 2019, 27(8): 11057-11068.
修改评论