中文版 | English
题名

青藏高原亚东-谷露地堑系高温地热系统流体地球化学成因

其他题名
Fluidgeochemistrygenesisofthehigh-temperaturegeothermalsystemsalongtheYadong-Gulurif, Tibetan Plateau
姓名
姓名拼音
ZHOU Hui
学号
11930476
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
匡星星
导师单位
环境科学与工程学院
论文答辩日期
2022-05-12
论文提交日期
2022-06-18
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着全球变暖、能源短缺和大气污染等问题的日益严重,地热能源作为可再生绿色能源受到了广泛的关注。青藏高原是中国高温地热资源最丰富的地区,具有巨大的地热资源开发潜力。青藏高原的高温地热资源受控于一系列南北向发育的地堑系,其中,亚东-谷露地堑系是规模最大、地热资源最丰富的地热带。本文基于亚东-谷露地堑系地热的水地球化学和同位素特征,结合水文地球化学模拟手段,对地热流体的来源、演化和循环机制进行研究。研究区浅层地下水的水化学特征较为一致,以 Ca-HCO3 型和 Ca-HCO3·SO4 型为主;地热水的水化学特征呈现出较大的差异,包括 Na-Cl 主导型(Na-Cl·HCO3, Na-HCO3·Cl, Na·Ca-HCO3·Cl, Na·Ca-Cl 和 Na·Ca- Cl·HCO3Na-HCO3 型。浅层地下水主要受控于碳酸盐岩和蒸发岩风化 过程,地热水主要受控于深部 CO2 参与的硅酸盐岩风化、碳酸盐岩风化和阳离子交替吸附过程。反向地球化学模拟表明地热水运移过程中主要发生钠长石、钾长石、盐岩、方解石、白云石、石膏/硬石膏和 CO2 溶解,同时发生石英/玉髓和高岭石的沉淀。地热水中稀碱金属元素和硼元素的比率明显低于花岗岩中的比率,这表明流体在上升过程中稀碱金属经历过交替吸附过程,同时受到岩浆脱气过程的显著影响。氢氧同位素表明地表水和浅层地下水主要由大气降水补给;地热水主要由大气降水、冰雪融水和岩浆流体补给,位于地堑系北段和南段的平均补给高程分别为 5116 m5816 m。地热水主要的 CO2 来源为内源碳,贡献比例为 77~99%。基于经验公式地温计、硅-焓混合模型和地球化学热力学模拟,北段和南段的热储温度分别为 160~312 ℃ 235~238 ℃,循环深度范围分别为 2.5~6.9 km 3.4~6.5 km。热源主要为壳源热,其中构造变形生热和放射性元素生热贡献比的范围分别为 34%~81%14%~47%,地幔热贡献较少。基于研究区地质构造背景,从“源、通、储、盖”和流体演化角度提出了亚东-谷露地堑系高温地热系统成因概念模式,为高温地热资源的开发和青藏高原深循环地下水的研究提供了依据。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] JOLIE E, SCOTT S, FAULDS J, et al. Geological controls on geothermal resources for power generation[J]. Nature Reviews Earth & Environment, 2021, 2(5): 324-339.
[2] LUND J W, TOTH A N. Direct utilization of geothermal energy 2020 worldwide review[J]. Geothermics, 2021, 90: 101915.
[3] ZHANG L, CHEN S, ZHANG C. Geothermal power generation in China: Status and prospects[J]. Energy Science & Engineering, 2019, 7(5): 1428-1450.
[4] CHEN H, ZHU Q, PENG C, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau [J]. Global Change Biology, 2013, 19(10): 2940-2955.
[5] 庞忠和, 胡圣标, 汪集旸. 中国地热能发展路线图[J]. 科技导报, 2012, 30(32): 18-24.
[6] 汪集旸. 地热学及其应用[M]. 北京: 科学出版社, 2015.
[7] KONG Y, PANG Z, SHAO H, et al. Recent studies on hydrothermal systems in China: A review[J]. Geothermal Energy, 2014, 2: 19.
[8] YANG P, CHENG Q, XIE S, et al. Hydrogeochemistry and geothermometry of deep thermal water in the carbonate formation in the main urban area of Chongqing, China[J]. Journal of Hydrology, 2017, 549: 50-61.
[9] BERTANI R. Geothermal power generation in the world 2010–2014 update report[J]. Geothermics, 2016, 60: 31-43.
[10] MOYA D, ALDAS C, KAPARAJU P. Geothermal energy: power plant technology and direct heat applications[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 889-901.
[11] ZHU J, HU K, LU X, et al. A review of geothermal energy resources, development, and applications in China: Current status and prospects[J]. Energy, 2015, 93: 466-483.
[12] 庞忠和, 黄少鹏, 胡圣标, 等. 中国地热研究的进展与展望[J]. 地质科学, 2014, 49(3): 719-727.
[13] GUO Q. Hydrogeochemistry of high-temperature geothermal systems in China: A review[J]. Applied Geochemistry, 2012, 27(10): 1887-1898.
[14] GUO Q, PLANER-FRIEDRICH B, LIU M, et al. Magmatic fluid input explaining the geochemical anomaly of very high arsenic in some southern Tibetan geothermal waters[J]. Chemical Geology, 2019, 513: 32-43.
[15] 佟伟, 廖志杰, 刘时彬, 等. 西藏温泉志[M]. 北京: 科学出版社,1999.
[16] 侯增谦, 吕庆田, 王安建,等. 初论陆-陆碰撞与成矿作用 —以青藏高原造山带为例[J]. 矿床地质, 2003, 22(4): 319-333.
[17] WANG Y, GU H, LI D, et al. Hydrochemical characteristics and genesis analysis of geothermal fluid in the Zhaxikang geothermal field in Cuona County, southern Tibet[J]. Environmental Earth Sciences, 2021, 80(11): 415.
[18] WANG X, WANG G L, GAN H N, et al. Hydrochemical characteristics and evolution of geothermal fluids in the Chabu high-temperature geothermal system, Southern Tibet[J]. Geofluids, 2018: 1-15.
[19] DUO J. The basic characteristics of the Yangbajing geothermal field — a typical high temperature geothermal system[J]. Engineering Science, 2003, 5(1): 42-47.
[20] GUO Q, WANG Y, LIU W. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China[J]. Journal of Volcanology and Geothermal Research, 2007, 166(3-4): 255-268.
[21] 赵平, KENNEDY M, 多吉, 等. 西藏羊八井热田地热流体成因及演化的 惰性气体制约[J]. 岩石学报, 2001, 17(3): 497-503.
[22] GUO Q, WANG Y, LIU W. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China[J]. Journal of Volcanology and Geothermal Research, 2009, 180(1): 9-20.
[23] YUAN J, GUO Q, WANG Y. Geochemical behaviors of boron and its isotopes in aqueous environment of the Yangbajing and Yangyi geothermal fields, Tibet, China[J]. Journal of Geochemical Exploration, 2014, 140: 11-22.
[24] MAKOVSKY Y, KLEMPERER S L, RATSCHBACHER L, et al. INDEPTH wide-angle reflection observation of P-wave-to-S-wave conversion from crustal bright spots in Tibet[J]. Science, 1996, 274: 1690-1691.
[25] KIND R, NI J, ZHAO W, et al. Evidence from earthquake data for a partially of molten crustal layer in Southern Tibet[J]. Science, 1996, 274: 1692-1693.
[26] BROWN L D, ZHAO W, NELSON K D, et al. Bright spots, structure, and magmatism in Southern Tibet from INDEPTH seismic reflection profiling[J]. Science, 1996, 274: 1688-1690.
[27] NELSON K D, ZHAO W, BROWN L D, et al. Partially molten middle crust beneath Southern Tibet: Synthesis of project INDEPTH results[J]. Science, 1996, 274: 1684-1687.
[28] MUFFLER P, CATALDI R. Methods for regional assessment of geothermal resources[J]. Geothermics, 1978, 7: 53-89.
[29] ARNORSSON S. Isotopic and chemical techiques in geothermal exploration, development and use[M]. Vienna: International Atomic Energy Agency, 2000.
[30] NICHOLSON K. Geothermal fluids chemistry and exploration techniques[M]. New York: Verlag Berlin Heidelberg, 1993.
[31] 强闫, 于汶加, 王安建, 等. 全球地热资源述评[J]. 2009, 27(6): 69-73.
[32] KIM D, BROWN L D, ÁRNASON K, et al. Magma “bright spots” mapped beneath Krafla, Iceland, using RVSP imaging of reflected waves from microearthquakes[J]. Journal of Volcanology and Geothermal Research, 2020, 391: 106365.
[33] BERTINI G, CASINI M, GIANELLI G, et al. Geological structure of a long-living geothermal system, Larderello, Italy[J]. Terra Nova, 2006, 18(3): 163-169.
[34] AMANDA F F, YAMADA R, UNO M, et al. Evaluation of caldera hosted geothermal potential during volcanism and magmatism in subduction system, NE Japan[J]. Geofluids, 2019: 1-14.
[35] 石耀霖,朱元清,沈显杰,等. 青藏高原构造热演化的主要控制因素[J]. 地球物理学报, 35: 710-720.
[36] 段晨阳. 羊易卜杰母河谷区地下热水水文地球化学特性及形成机制研究[D]. 中国地质大学(北京), 2014.
[37] ZHANG W, WANG G, XING L, et al. Geochemical response of deep geothermal processes in the Litang region, Western Sichuan[J]. Energy Exploration & Exploitation, 2019, 37(2): 626-645.
[38] FAN Y F, PANG Z H, LIAO Z, et al. Hydrogeochemical characteristics and genesis of geothermal water from the Ganzi geothermal field, eastern Tibetan Plateau[J]. Water, 2019, 11(8): 1-28.
[39] GIGGENBACH W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52: 2749-2765.
[40] 张知非. 西藏的地热研究[J]. 矿物岩石地球化学, 1985, 2: 59-61.
[41] 朱立新, 朱炳球. 西藏羊八井热田的碱金属元素研究[J]. 物探与化探, 1990, 14(1): 55-61.
[42] 郑亚新, 章铭陶, 朱炳球, 等. 西藏地热系统的稀碱金属特征及开发利用潜力[J]. 自然资源学报, 1992, 7(3): 249-257.
[43] 李振清, 侯增谦, 聂凤军, 等. 西藏地热活动中铯的富集过程探讨[J]. 地质学报 2006, 80(9): 1457-1464.
[44] 赵元艺, 赵希涛, 马志邦. 西藏搭格架热泉型艳矿床年代学研究[J]. 岩石学报, 2006, 22(3): 717-724.
[45] SU J, TAN H, CHEN X. The groundwater deep circulation and large-scale geothermal deposition in response to the extension of the Yadong–Gulu rift, South Tibet, China[J]. Journal of Volcanology and Geothermal Research, 2020, 395: 106836.
[46] 庞忠和, 杨峰田, 罗璐. 地热田储层温度的确定方法[M]. 北京: 新华出版社,2013.
[47] FOURNIER R O. Chemical geothermometers and mixing models for gothermal sysytems[J]. Geothermics, 1977, 5: 41-55.
[48] FOURNIER R, TRUESDELL A H. An empirical Na-K-Ca geothepmometer for natural waters[J]. Geochimica et Coemochimica Acta, 1973, 37: 1255-1275.
[49] FOUILLAC C, MICHARD G. Sodium/lithium ratio applied to geothermometry of geothermal reservoirs[J]. Geothermics, 1981, 10: 55-70.
[50] VERMA S P, SANTOYO E. New improved equations for Na/K, Na/Li and SiO2, geothermometers by outlier detection and rejection[J]. Journal of Volcanology and Geothermal Research 1997, 79: 9-23.
[51] REED M, SPYCHER N. Calculation of pH and mineral equilibria in hydrothermal waters with_application to geothermometry and studies of boiling and dilution[J]. Geochim et Cosmochimica Acta, 1984, 48: 1479-1492.
[52] 安可士, 张锡根, 何世春. 羊八井地热田地球化学特征[J]. 水文地质, 1980, 1: 14-18.
[53] 沈显杰. 西藏羊八井高温地热田地热资源评价(一)参数分析[J]. 工程勘察, 1985, 5: 53-58.
[54] 李家振, 张有琦, 骆红井. 西藏当雄羊应乡地热田新生代火山岩特征及其成因探讨[J]. 现代地质, 1992, 6(1): 96-108.
[55] FOWLER A P G, ZIERENBERG R A, REED M H, et al. Rare earth element systematics in boiled fluids from basalt-hosted geothermal systems[J]. Geochimica et Cosmochimica Acta, 2019, 244: 129-154.
[56] 伍坤宇, 沈立成, 王香桂, 等. 西藏朗久地热田及其温泉水化学特征研究[J]. 中国岩溶, 2011, 30(1): 1-8.
[57] 刘昭, 陈康, 男达瓦. 西藏古堆地热田地下热水水化学特征[J]. 地质论评, 2017, 63(S1): 353-354.
[58] CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133: 1702-1703.
[59] CRAIG H. The isotopic geochemistry of water and carbon in geothermal areas, Nuclear geology on geothermal areas[J]. Spoleto, 1963: 17-53.
[60] GIGGENBACH W F. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin[J]. Earth and Planetary Science Letters, 1992, 113: 495-510.
[61] 于津生, 张鸿斌, 虞福基, 等. 西藏东部大气降水氧同位素组成特征[J]. 地球化学, 1980, 2: 113-120.
[62] 哈承祐. 羊八井地热田高温热水赋存规律的探讨[J]. 水文地质工程地质, 1980, 1: 9-13.
[63] GUO Q, WANG Y, LIU W. O, H, and Sr isotope evidences of mixing processes in two geothermal fluid reservoirs at Yangbajing, Tibet, China[J]. Environmental Earth Sciences, 2010, 59(7): 1589-1597.
[64] TAN H, ZHANG Y, ZHANG W, et al. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes[J]. Applied Geochemistry, 2014, 51: 23-32.
[65] 刘昭, 蔺文静, 张萌, 等. 西藏尼木—那曲地热流体成因及幔源流体贡献[J]. 地学前缘, 2014, 21(6): 356-371.
[66] CHIODINI G, FRONDINI F, CARDELLINI C, et al. Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: The case of central Apennine, Italy[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B4): 8423-8434.
[67] CHIODINI G, BALDINI A, BARBERI F, et al. Carbon dioxide degassing at Latera caldera (Italy): Evidence of geothermal reservoir and evaluation of its potential energy[J]. Journal of Geophysical Research, 2007, 112: B12204.
[68] GUO Q, PANG Z, WANG Y, et al. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas[J]. Applied Geochemistry, 2017, 81: 63-75.
[69] YIN A, HARRISON T M. Geological evolution of the HIMALAYAN Tibetan orogen[J]. Annual Review of Earth Planetary Sciences, 2000, 28: 211-280.
[70] LI D, LUO H, HU T, et al. Identification of the roles of climate factors, engineering construction, and agricultural practices in vegetation dynamics in the Lhasa river basin, Tibetan Plateau[J]. Remote Sensing, 2020, 12: 1-20.
[71] HOU Z, DUAN L, LU Y, et al. Lithospheric architecture of the Lhasa terrane and its control onore deposits in the Himalayan-Tibetan orogen[J]. Economic Geology, 2015, 110: 1541-1575.
[72] COGAN M J, NELSON K D, KIDD W S F, et al. Shallow structure of the Yadong-Gulu rift, southern Tibet, from refraction analysis of project INDEPTH common midpoint data[J]. Tectonics, 1998, 17(1): 46-61.
[73] ARMIJO R, TAPPONNIER P, MERCIER J L, et al. Quaternary extension in southern Tibet: Field observations and tectonic implications[J]. Journal of Geophysical Research, 1986, 91(B14): 807-871.
[74] ZUO J, WU Z, HA G, et al. Spatial variation of nearly NS-trending normal faulting in the southern Yadong-Gulu rift, Tibet: New constraints from the Chongba Yumtso fault, Duoqing Co graben[J]. Journal of Structural Geology, 2021, 144: 1-20.
[75] WU ZH, YE PS, BAROSH P J, et al. The October 6, 2008 Mw 6.3 magnitude Damxung earthquake, Yadong-Gulu rift, Tibet, and implications for present-day crustal deformation within Tibet[J]. Journal of Asian Earth Sciences, 2011, 40(4): 943-957.
[76] 吴珍汉, 胡道功, 吴中海, 等. 西藏羊八井—当雄—谷露地堑的地质特征与形成时代[C]. 青藏高原地质过程和环境灾害效应文集,2005.
[77] 吴中海, 赵希涛, 吴珍汉, 等. 西藏当雄—羊八井盆地的第四纪地质与断裂活动研究[J]. 地质力学学报, 2006, 3: 305-316.
[78] KAPP J L D A, HARRISON T M, KAPP P, et al. Nyainqentanglha Shan: a window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet[J]. Journal of Geophysical Research, 2005, 110(B8): B08413.
[79] 吴中海, 叶培盛, 王成敏, 等. 藏南安岗地堑的史前大地震遗迹、年龄及其地质意义[J]. 地球科学, 2015, 40(10): 1621-1641.
[80] ARMIJO R, TAPPONNIER P, HAN T. Late cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B3): 2787-2838.
[81] 王晓先, 张进江, 闫淑玉, 等. 藏南康马拆离断层的构造特征及其活动时代[J]. 大地构造与成矿学, 2015, 39(2): 250-259.
[82] 王立全, 潘桂棠, 丁俊, 等. 青藏高原及邻区地质图及说明书(1:500000)[M]. 北京:地质出版社, 2013.
[83] 吴中海, 赵希涛, 叶培盛, 等. 西藏安多—错那湖地堑的第四纪地质、断裂活动及其运动学特征分析[J]. 第四纪研究, 2005, 25(4): 490-502.
[84] YANG P, LUO D, HONG A, et al. Hydrogeochemistry and geothermometry of the carbonate-evaporite aquifers controlled by deep-seated faults using major ions and environmental isotopes[J]. Journal of Hydrology, 2019, 579: 50-61.
[85] WU Y, ZHOU X, WANG M, et al. Comparison of hydrogeological characteristics and genesis of the Xiaguan Hot Spring and the Butterfly Spring in Yunnan of China[J]. Journal of Hydrology, 2021, 593: 1-15.
[86] LEE J M, KOH D C, CHAE G T, et al. Integrated assessment of major element geochemistry and geological setting of traditional natural mineral water sources in South Korea at the national scale[J]. Journal of Hydrology, 2021, 598: 1-18.
[87] FONTES J C, MATRAY J M. Geochemistry and origin of formation brines from the Paris Basin, France[J]. Chemical Geology, 1993, 109: 149-175.
[88] NEGRI A, DANIELE L, ARAVENA D, et al. Decoding fjord water contribution and geochemical processes in the Aysen thermal springs (Southern Patagonia, Chile)[J]. Journal of Geochemical Exploration, 2018, 185:1-13.
[89] MUKHERJEE A, BHATTACHARYA P, SHI F, et al. Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India)[J]. Applied Geochemistry, 2009, 24(10): 1835-1851.
[90] MUKHERJEE A, SCANLON B R, FRYAR A E, et al. Solute chemistry and arsenic fate in aquifers between the Himalayan foothills and Indian craton (including central Gangetic plain): Influence of geology and geomorphology[J]. Geochimica et Cosmochimica Acta, 2012, 90: 283-302.
[91] VERMA S, MUKHERJEE A, MAHANTA C, et al. Influence of geology on groundwater–sediment interactions in arsenic enriched tectono-morphic aquifers of the Himalayan Brahmaputra river basin[J]. Journal of Hydrology, 2016, 540: 176-195.
[92] SRACEK O, RAHOBISOA J J, TRUBAC J, et al. Geochemistry of thermal waters and arsenic enrichment at Antsirabe, central highlands of Madagascar[J]. Journal of Hydrology, 2019, 577: 123895.
[93] SRACEK O, WANKE H, NDAKUNDA N N, et al. Geochemistry and fluoride levels of geothermal springs in Namibia[J]. Journal of Geochemical Exploration, 2015, 148: 96-104.
[94] DUPALOVA T, SRACEK O, VENCELIDES Z, et al. The origin of thermal waters in the northeastern part of the Eger Rift, Czech Republic[J]. Applied Geochemistry, 2012, 27(3): 689-702.
[95] ZHANG L, GUO Z, SANO Y, et al. Flux and genesis of CO2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa terrane, South Tibet: Constraints on characteristics of deep carbon cycle in the India-Asia continent subduction zone[J]. Journal of Asian Earth Sciences, 2017, 149: 110-123.
[96] ZHANG M, ZHANG L, ZHAO W, et al. Metamorphic CO2 emissions from the southern Yadong-Gulu rift, Tibetan Plateau: Insights into deep carbon cycle in the India-Asia continental collision zone[J]. Chemical Geology, 2021, 584: 1-15.
[97] KIS B M, BACIU C, ZSIGMOND A R, et al. Constraints on the hydrogeochemistry and origin of the CO2-rich mineral waters from the eastern Carpathians-Transylvanian basin boundary (Romania)[J]. Journal of Hydrology, 2020, 591: 1-19.
[98] LAMBRAKIS N, ZAGANA E, KATSANOU K. Geochemical patterns and origin of alkaline thermal waters in Central Greece (Platystomo and Smokovo areas)[J]. Environmental Earth Sciences, 2012, 69(8): 2475-2486.
[99] HARLOV D E, AUSTRHEIM H. Metasomatism and the Chemical Transformation of Rock[M]. New York: Verlag Berlin Heidelberg, 2013.
[100]RAYCHOWDHURY N, MUKHERJEE A, BHATTACHARYA P, et al. Provenance and fate of arsenic and other solutes in the Chaco-Pampean Plain of the Andean foreland, Argentina: From perspectives of hydrogeochemical modeling and regional tectonic setting[J]. Journal of Hydrology, 2014, 518: 300-316.
[101]GULER C, THYNE G D. Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells-Owens Valley area, southeastern California, USA[J]. Journal of Hydrology, 2004, 285(4): 177-198.
[102]PARKHURST D L, APPELO C A J. Description of input and examples for PHREEQC Version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[M]. U.S. Geological Survey, 2013.
[103]GASTMANS D, HUTCHEON I, MENEGARIO A A, et al. Geochemical evolution of groundwater in a basaltic aquifer based on chemical and stable isotopic data: Case study from the Northeastern portion of Serra Geral Aquifer, São Paulo state (Brazil)[J]. Journal of Hydrology, 2016, 535: 598-611.
[104]BLASCO M, AUQUE L F, GIMENO M J. Geochemical evolution of thermal waters in carbonate – evaporitic systems: The triggering effect of halite dissolution in the dedolomitisation and albitisation processes[J]. Journal of Hydrology, 2019, 570: 623-636.
[105]GIGGENBACH W F, SHEPPARD D S, ROBINSON B W, et al. Geochemical structure and position of the Waiotapu geothermal field, New Zealand[J]. Geothermics, 1994, 23: 299-644.
[106]PASVANOGLU S. Geochemistry and conceptual model of thermal waters from Ercis - Zilan Valley, eastern Turkey[J]. Geothermics, 2020, 86: 1-17.
[107]SHOEDARTO R M, TADA Y, KASHIWAYA K, et al. Specifying recharge zones and mechanisms of the transitional geothermal field through hydrogen and oxygen isotope analyses with consideration of water-rock interaction[J]. Geothermics, 2020, 86: 1-16.
[108]CHAO H C, PI J L, YOU C F, et al. Hydrogeology constrained by multi-isotopes and volatiles geochemistry of hot springs in Tatun Volcanic Group, Taiwan[J]. Journal of Hydrology, 2021, 600: 126515.
[109]KAASALAINEN H, STEFANSSON A. The chemistry of trace elements in surface geothermal waters and steam, Iceland[J]. Chemical Geology, 2012, 330: 60-85.
[110]WRAGE J, TARDANI D, REICH M, et al. Geochemistry of thermal waters in the Southern Volcanic Zone, Chile – Implications for structural controls on geothermal fluid composition[J]. Chemical Geology, 2017, 466: 545-561.
[111]GIGGENBACH W F, SOTO R C. Isotopic and chemical composition of water and steam discharges from volcanic-magmatic-hydrothermal systems of the Guanacaste Geothermal Province, Costa Rica[J]. Applied Geochemistry, 1992, 7: 309-332.
[112] KAASALAINEN H, STEFANSSON A, GIROUD N, et al. The geochemistry of trace elements in geothermal fluids, Iceland[J]. Applied Geochemistry, 2015, 62: 207-223.
[113]GOGUEL R. The rare alkalies in hydrothermal aitention at Wairakei snd ilbadlands, geothermal fiels[J]. Geochemica et Cosmochmica Acta, 1983, 47: 429-437.
[114]PASVANOGLU S, CELIK M. A conceptual model for groundwater flow and geochemical evolution of thermal fluids at the Kızılcahamam geothermal area, Galatian volcanic Province[J]. Geothermics, 2018, 71: 88-107.
[115]HOU Y, SHI Z, MU W. Fluid Geochemistry of fault zone hydrothermal system in the Yidun-Litang area, eastern Tibetan Plateau geothermal belt[J]. Geofluids, 2018: 1-13.
[116]SANTOS-RAGA G, SANTOYO E, GUEVARA M, et al. Tracking geochemical signatures of rare earth and trace elements in spring waters and outcropping rocks from the hidden geothermal system of Acoculco, Puebla (Mexico)[J]. Journal of Geochemical Exploration, 2021, 227: 1-25.
[117]CHANDRASEKHAR T, MINISSALE A, VASELLI O, et al. Understanding the evolution of thermal fluids along the western continental margin of India using geochemical and boron isotope signatures[J]. Geothermics, 2018, 74: 197-209.
[118]DOTSIKA E. Isotope and hydrochemical assessment of the Samothraki Island geothermal area, Greece[J]. Journal of Volcanology and Geothermal Research, 2012, 233-234: 18-26.
[119]RAHAYUDIN Y, KASHIWAYA K, TADA Y, et al. On the origin and evolution of geothermal fluids in the Patuha Geothermal Field, Indonesia based on geochemical and stable isotope data[J]. Applied Geochemistry, 2020, 114: 104530.
[120]ARNORSSON S. Geothermal systems in Iceland: structure and conceptual models-Ⅰ. high-temperature areas[J]. Geothermics, 1995, 24: 561-602.
[121]REYES A G, TROMPETTER W J. Hydrothermal water–rock interaction and the redistribution of Li, B and Cl in the Taupo Volcanic Zone, New Zealand[J]. Chemical Geology, 2012, 314: 96-112.
[122]GIGGENBACH W F. Variations in the chemical and isotopic composition of fluids discharged from the Taupo Volcanic Zone, New Zealand[J]. Journal of Volcanology and Geothermal Research, 1995, 68(1-3): 89-116.
[123]DOTSIKA E. H–O–C–S isotope and geochemical assessment of the geothermal area of Central Greece[J]. Journal of Geochemical Exploration, 2015, 150: 1-15.
[124]GIGGENBACH W F. Relative importance of thermodynamic and kinetic processes in governing the chemical and isotopic composition of carbon gases in high-heat flow sedimentary basins[J]. Geochimica et Cosmochimica Acta, 1997, 61: 3763-3785.
[125]GIGGENBACH W E, SANO Y, SCHMINCKE H U. CO2-rich gases from Lakes Nyos and Monoun, Cameroon[J]. Journal of Volcanology and Geothermal Research, 1991, 45: 311-323.
[126]QIU X, WANG Y, WANG Z, et al. Determining the origin, circulation path and residence time of geothermal groundwater using multiple isotopic techniques in the Heyuan Fault Zone of Southern China[J]. Journal of Hydrology, 2018, 567: 339-350.
[127]HENSEN C, NUZZO M, HORNIBROOK E, et al. Sources of mud volcano fluids in the Gulf of Cadiz—indications for hydrothermal imprint[J]. Geochimica et Cosmochimica Acta, 2007, 71(5): 1232-1348.
[128]YU J, ZHANG H, YU F, et al. Oxygen and hydrogen isotopic compositions of meteoric waters in the eastern part of Xizang[J]. Geochemistry, 1984, 3: 93-101.
[129]KARLSTROM K E, CROSSEY L J, HILTON D R, et al. Mantle 3He and CO2 degassing in carbonic and geothermal springs of Colorado and implications for neotectonics of the Rocky Mountains[J]. Geology, 2013, 41(4): 495-498.
[130]CHIODINI G, CARDELLINI C, BINI G, et al. The carbon dioxide emission as indicator of the geothermal heat flow: review of local and regional applications with a special focus on Italy[J]. Energies, 2021, 14(20): 1-15.
[131]LIU W, GUAN L, LIU Y, et al. Fluid geochemistry and geothermal anomaly along the Yushu-Ganzi-Xianshuihe fault system, eastern Tibetan Plateau: Implications for regional seismic activity[J]. Journal of Hydrology, 2022, 607: 1-15.
[132]WILLIAMS A J, CROSSEY L J, KARLSTROM K E, et al. Hydrogeochemistry of the Middle Rio Grande aquifer system-Fluid mixing and salinization of the Rio Grande due to fault inputs[J]. Chemical Geology, 2013, 351: 281-298.
[133]KARAKUS H, ERGULER Z A, ÖZKUL C, et al. Geochemical and isotopic characteristics of geothermal discharges in the Emet Basin, Western Anatolia, Turkey[J]. Applied Geochemistry, 2019, 107: 105-119.
[134]CHIODINI G, CARDELLINI C, AMATO A, et al. Carbon dioxide earth degassing and seismogenesis in central and southern Italy[J]. Geophysical Research Letters, 2004, 31(7): L07615.
[135]CROSSEY L J, KARLSTROM K E, SPRINGER A E, et al. Degassing of mantle-derived CO2 and He from springs in the southern Colorado Plateau region—Neotectonic connections and implications for groundwater systems[J]. GSA Bulletin, 2009, 121(7-8): 1034-1053.
[136]FRONDINI F, CALIRO S, CARDELLINI C, et al. Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic-geothermal area (Italy)[J]. Applied Geochemistry, 2009, 24(5): 860-875.
[137]李祥辉, 王成善, Hugh C, 等. 西藏特提斯喜马拉雅白垩纪中期Cenomanian-Turonian期碳同位素偏移[J]. 地球科学, 2005, 30: 17-27.
[138]胡修棉, 王成善, 李祥辉. 藏南海相白至纪碳酸盐碳稳定同位素演化 与古海洋溶解氧事 [J]. 自然科学进展, 2001, 11: 721-728.
[139]ZHANG Y Z, WANG X L, LI J Y, et al. Oligocene leucogranites of the Gangdese batholith, Southern Tibet: Fractional crystallization of felsic melts from juvenile lower crust[J]. Journal of Petrology, 2021, 62(11): 1-29.
[140]XIE C, JIN S, WEI W, et al. Middle crustal partial melting triggered since the mid‐miocene in southern Tibet: Insights from magnetotelluric data [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(9): 1-18.
[141]FOURNIER R, TRUESDELL A H. An empirical Na-K-Ca geothepmometer for natural waters[J]. Geochemica et Cosmochmica Ada, 1973, 37: 1255-1275.
[142]KHARAKA Y K, LICO M S, LAW L M. Chemical geothermometers applied to formation waters, Gulf-of-Mexico and California basins[J]. Aapg Bulletin-American Association of Petroleum Geologists, 1982, 66(5): 588.
[143]MAO X, ZHU D, NDIKUBWIMANA I, et al. The mechanism of high-salinity thermal groundwater in Xinzhou geothermal field, south China: Insight from water chemistry and stable isotopes[J]. Journal of Hydrology, 2021, 593: 125889.
[144]WANG C, ZHENG M. Hydrochemical characteristics and evolution of hot fluids in the Gudui geothermal field in Comei county, Himalayas[J]. Geothermics, 2019, 81: 243-258.
[145]REZAEI A, REZAEIAN M, PORKHIAL S. The hydrogeochemistry and geothermometry of the thermal waters in the Mouil Graben, Sabalan volcano, NW Iran[J]. Geothermics, 2019, 78: 9-27.
[146]AVSAR O, KURTULUS B, GURSU S, et al. Geochemical and isotopic characteristics of structurally controlled geothermal and mineral waters of Mugla (SW Turkey)[J]. Geothermics, 2016, 64: 466-481.
[147]CHENAKER H, HOUHA B, VINCENT V. Hydrogeochemistry and geothermometry of thermal water from north-eastern Algeria[J]. Geothermics, 2018, 75: 137-145.
[148]CHUNHUI L, JIN T, PULI Z, et al. Simultaneous removal of fluoride and arsenic in geothermal water in Tibet using modified yak dung biochar as an adsorben[J]. Royal Society Open Science, 2018, 5(11): 181266.
[149]ALCICEK H, BULBUL A, YAVUZER I, et al. Origin and evolution of the thermal waters from the Pamukkale geothermal field (Denizli basin, SW Anatolia, Turkey): Insights from hydrogeochemistry and geothermometry[J]. Journal of Volcanology and Geothermal Research, 2019, 372: 48-70.
[150]LI J, YANG G, SAGOE G, et al. Major hydrogeochemical processes controlling the composition of geothermal waters in the Kangding geothermal field, western Sichuan Province[J]. Geothermics, 2018, 75: 154-163.
[151]LEEMAN W P, DOE B R, WHELAN J. Radiogenic and stable studies of hot-spring deposits in Yellowstone national park and their genetic implacations[J]. Geochemical Journal, 1977, 11(2): 65-74.
[152]WANG X, WANG G, LU C, et al. Evolution of deep parent fluids of geothermal fields in the Nimu–Nagchu geothermal belt, Tibet, China[J]. Geothermics, 2018, 71: 118-131.
[153]PANG Z H, REED M. Theoretical chemical thermometry on geothermal waters: Problems and methods[J]. Geochimica et Cosmochimica Acta, 1998, 62: 1083-1091.
[154]PALANDRI J L, REED M H. Reconstruction of in situ composition of sedimentary formation waters[J]. Geochimica et Cosmochimica Acta, 2001, 62: 1741-1767.
[155]REED M H, SPYCHER N F, PALANDRI J. SOLVEQ-XPT : A computer program for computing aqueous-mineral-gas equilibria version 2.23[M]. University of Oregon Eugene, 2014.
[156]石耀霖, 朱元清, 沈显杰. 青藏高原构造热演化的主要控制因素[J]. 地球物理学报, 1992, 35(6): 710-719.
[157]SHEN X J, ZHANG W R, GUAN Y, et al. Heat flow profile from Yadong to Qaidam running through the Tibetan Plateau[J]. Chinese Science Bulletin, 1990, 35(4): 314-316.
[158]沈显杰, 张文仁, 杨淑贞, 等. 青藏高原南北地体壳慢热结构差异的大地热流证据[J]. 中国地质科学院院报, 1990, 21: 203-213.
[159]沈显杰, 杨淑贞, 沈继英, 等. 西藏岩浆岩放射性生热率的实验研究[J]. 岩石学报, 1989, 4: 83-90.
[160]TANG X, ZHANG J, PANG Z, et al. Distribution and genesis of the eastern Tibetan Plateau geothermal belt, western China[J]. Environmental Earth Sciences, 2016, 76(1): 31.
[161]RYBACH L. Radioactive heat production in rocks and its relation to other petrophysical parameters[J]. Pure and Applied Geophysics, 1976, 114: 309-318.
[162]YANG W, ZHIMING S. Crustal composition of China continent constrained from heat flow data and helium isotope ratio of underground fluid[J]. Acta Geologica Sinica (English Edition), 2010, 84(1): 178-184.

所在学位评定分委会
力学与航空航天工程系
国内图书分类号
P641.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336001
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
周慧. 青藏高原亚东-谷露地堑系高温地热系统流体地球化学成因[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930476-周慧-环境科学与工程学(10435KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周慧]的文章
百度学术
百度学术中相似的文章
[周慧]的文章
必应学术
必应学术中相似的文章
[周慧]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。