中文版 | English
题名

轴流涡轮叶尖泄漏流损失分析及控制

其他题名
ANALYSIS AND CONTROL OF TIP LEAKAGE FLOW LOSS IN AXIAL TURBINE
姓名
姓名拼音
ZHAO Chenyan
学号
11930335
学位类型
硕士
学位专业
080103 流体力学
学科门类/专业学位类别
08 工学
导师
任光明
导师单位
力学与航空航天工程系
论文答辩日期
2022-05-14
论文提交日期
2022-06-18
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

涡轮转子叶尖间隙泄漏流会导致涡轮损失增加,效率降低,为降低叶尖泄漏损失,本论文开展了轴流涡轮叶尖泄漏流的损失及控制的分析研究。研究以典型轴流涡轮为研究对象,应用雷诺平均Navier-StokesRANS)方法,研究了轴流涡轮转子叶尖泄漏涡破碎形成的回流现象,并分析了叶尖间隙高度、叶型负荷、机匣相对运动等因素对叶尖泄漏涡损失的影响,探索了机匣沟槽结构在微型轴流式涡轮转子叶尖泄漏涡流动控制的应用。

1)在叶尖泄漏流的流动现象研究中,以美国通用电气公司Energy Efficient Engine(高效节能发动机, )第一级高压涡轮动叶为研究对象,分析了不同转速、不同落压比情况下的叶尖泄漏流和叶尖泄漏涡的表现情况。研究表明,当转速较大、落压比较大时,容易发生叶尖泄漏涡的破碎现象,在涡核中心线上能够观察到明显的回流。

2)在叶尖泄漏流的影响因素研究中,以美国通用电气公司 第一级高压涡轮动叶叶尖叶型为研究对象,研究了不同间隙高度、不同叶型负荷、机匣是否相对运动以及相对运动速度等因素对叶尖泄漏流的影响,研究表明,随着叶尖间隙高度的增加,叶尖泄漏流逐渐增加,泄漏涡增强,损失增加;叶型载荷系数增加,叶顶区域吸力面与压力面的静压差增加,叶尖泄漏流增强,由叶尖泄漏流造成的损失增加;机匣相对运动能够削弱叶尖泄漏涡,间隙区域最大泄漏位置后移,并使叶尖泄漏涡更接近吸力面;机匣相对运动速度越大,对泄漏涡的削弱效果和通道涡的增强越明显。

3)在叶尖泄漏流的控制研究中,对某微型涡喷发动机的单级轴流式涡轮进行机匣设计,研究分析了不同机匣沟槽结构对其叶尖泄漏流动的影响。结果说明:当全机匣沟槽结构的叶顶浸入沟槽时,封严效果较好;相较于全机匣沟槽结构,后开式机匣沟槽结构的封严效果更好,随着沟槽前缘间隙的增大,封严效果减弱;沟槽深度等于前缘间隙时,封严效果最佳,即泄漏流明显减弱,同时效率减小量较小。

 

其他摘要

Turbine rotor tip clearance leakage flow will increase turbine loss and reduce efficiency. In order to reduce tip leakage loss, in this paper, an analysis and research on the loss and control of axial turbine tip leakage flow is carried out. Taking typical axial turbines as the research object, the Reynolds-averaged Navier-Stokes (RANS) is used to study the backflow phenomenon formed by the breakdown of the tip leakage vortex of the axial turbine rotor, analyze the effect of the tip clearance height,blade profile load, and casing relative motion on the tip leakage vortex loss, and explore the influence of the casing groove structure in the vortex flow control of the tip leakage of the micro-axial turbine rotor. To study the flow phenomenon of tip leakage flow and tip leakage vortex in axial turbines, the rotor blades of GE3 E first-stage high-pressure turbine are taken as the research object, and the performance of tip leakage flow and tip leakage vortex under different rotational speeds and different drop-pressure ratios are analyzed. The research shows that when the rotating speed is high and the drop-pressure ratio is high, tip leakage vortex is easily broken, and obvious backflow can be observed on the vortex core center line. Taking the rotor tip profile of GE3 E first-stage high-pressure turbine as the research object, the influences of different clearance heights, different blade loads, relative motion of the casing and relative motion speed on the tip leakage flow were studied. The research shows that with the increase of the tip clearance height, the tip leakage flow gradually increases, the leakage vortex increases, and the loss increases; when the blade load coefficient increases, the static pressure difference between the suction surface and the pressure surface in the tip region also increases, so the tip leakage flow is enhanced and the loss caused by the tip leakage flow increases; the relative movement of the casing can weaken the tip leakage vortex, the maximum leakage position in the clearance area is moved back, and the tip leakage vortex is closer to the suction surface; the gr eater the relative movement speed of the casing, the weakening effect of leakage vortex and the enhancement of passage vortex are more obvious. In the control study of tip leakage flow, the casing of a single-stage axialflow turbine of a micro-turbojet engine is partially designed, and the influence of different casing groove structures on the tip leakage flow is studied and analyzed. The results show that when the blade tip of the full casing groove structure is immersed in the groove, the sealing effect is better; compared with the full casing groove structure, the sealing effect of the rear-opening casing groove structure is better. With the increase of the groove leading edge gap, the sealing effect is weakened; when the groove depth is equal to the leading edge gap, the sealing effect is the best, that is, the leakage flow is significantly weakened, and the reduction in efficiency is small.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] 甘晓华,薛洪涛,雷友锋.航空发动机工程通论[M].北京:北京理工大学出版社,2021.
[2] 邓向阳.压气机叶顶间隙流的数值模拟研究[D].北京:中国科学院工程热物理研究所,2006.
[3] BUNKER R S. A Review of Turbine Blade Tip Heat Transfer[J]. The New York Academy of Sciences, 2001, 934:64-79.
[4] CAO ZY, ZHANG X, ZHANG F, et al. Tip leakage vortex and its breakdown mechanism in aspirated compressor cascades designed with conventional method and curvature induced pressure recovery concept[J]. Aerospace Science and Technology, 2021,113:106692.
[5] SHANG WQ, LI D, LUO K, et al. Effects of tip clearance size on vortical structures and turbulence statistics in tip-leakage flows: A direct numerical simulation study[J]. Physics of Fluids, 2021,33(8):85127.
[6] WANG LK, LU JL, LIAO WL, et al. Numerical Simulation of the Tip Leakage Vortex Characteristics in a Semi-Open Centrifugal Pump[J]. Applied Sciences, 2019,9(23):5244.
[7] SHI L, ZHANG DS, JIN YX, et al. A study on tip leakage vortex dynamics and cavitation in axial-flow pump[J]. Fluid Dynamics Research, 2017,49(3):35504.
[8] GENG LL, ZHANG DS, CHEN J, et al. Large-Eddy Simulation of Cavitating Tip Leakage Vortex Structures and Dynamics around a NACA0009 Hydrofoil[J]. Journal of Marine Science and Engineering, 2021,9(11):1198.
[9] DENTON J D. Loss Mechanisms in Turbomachines[J]. Journal of Turbomachinery, 1993, 115, 621-656.
[10] MOORE J, TILTON J S. Tip Leakage Flow in a Linear Turbine Cascade[J]. Journal of Turbomachinery, 1988,110(1):18-26.
[11] SHI GT, LIU ZK, XIAO YX, et al. Tip leakage vortex trajectory and dynamics in a multiphase pump at off-design condition[J]. Renewable Energy, 2020,150:703-711.
[12] HUANG A C, GREITZER E M,TAN C S, et al. Blade Loading Effects on Axial Turbine Tip Leakage Vortex Dynamics and Loss[J]. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 2013,135(5): 051012.
[13] BINDON J P. The Measurement and Formation of Tip Clearance Loss[J]. Journal of Turbomachinery Trans Asme, 1989,111(3):257-263.
[14] RAINS D A. Tip clearance flows in axial compressors and pumps[M].California Institute of Technology. 1954.
[15] YAMAMOTO A. Endwall Flow/Loss Mechanisms in a Linear Turbine Cascade With Blade Tip Clearance[J]. Journal of Turbomachinery,1989,111(3): 264-275
[16] HEYES F J G, HODSON H P. Measurement and Prediction of Tip Clearance Flow in Linear Turbine Cascades[J]. Journal of Turbomachinery, 1993,115(3):376-382.
[17] 黄洪雁,韩万金,王仲奇.具有叶顶间隙涡轮转子叶栅流动的拓扑及旋涡结构观测[J].航空学报,1997(03):2-6.
[18] 颜培刚,王祥锋,韩万金.不同冲角下有叶顶间隙的涡轮叶栅拓扑与旋涡结构[J].实验流体力学,2012,26(03):32-37.
[19] PALAFOX P, OLDFIED M L G, LAGRAFF J E, et al. PIV Maps of Tip Leakage and Secondary Flow Fields on a Low-Speed Turbine Blade Cascade With Moving End Wall[J]. Journal of turbomachinery,2008, 130(1): 011001.
[20] 竺晓程,林万来,杜朝辉.轴流通风机叶顶区域流动的实验研究[J].上海交通大学学报,2005,(2)177-181.
[21] 马超,葛冰,臧述升.基于PIV测试技术的涡轮动叶栅流场可视化研究[J].热能动力工程,2014,29(04):361-366.
[22] SELL M, TREIBER M, CASCIARO C, et al. Tip-clearance-affected flow fields in a turbine blade row[J]. Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy, 1999,213(4):309-318.
[23] TALLMAN J, LAKSHMINARAYANA B. Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics: Part II—Effect of Outer Casing Relative Motion[J]. Journal of Turbomachinery, 2001,123(2):324-333.
[24] PHUTTHAVONG P, HASSAN I, LUCAS T. Unsteady Numerical Investigation of Blade Tip Leakage, Part 2: Time-Dependent Parametric Study[J]. Journal of thermophysics and heat transfer, 2008,22(3):474-484.
[25] 祁明旭,丰镇平.透平动叶顶部间隙流的表现形式及其对透平性能的影响[J].西安交通大学学报,2005(03):243-246.
[26] 王大磊.跨音速高压涡轮转子叶尖间隙泄漏流动及控制方法研究[D].北京:清华大学,2012.
[27] 易小兰,张华良,苏赫,等.超高负荷涡轮叶栅叶顶间隙流动特征及间隙高度的影响[J]. 航空动力学报,2015,30(08):1944-1949.
[28] 周治华.涡轮叶尖泄漏流动控制及传热特性研究[D].哈尔滨:哈尔滨工业大学,2019.
[29] MATSUNUMA T. Effects of Reynolds Number and Freestream Turbulence on Turbine Tip Clearance Flow[J]. Journal of turbomachinery, 2006,128(1): 166-177.
[30] VIRDI A S, ZHANG Q, HE L, et al. Aerothermal Performance of Shroudless Turbine Blade Tips with Relative Casing Movement Effects[J]. Journal of propulsion and power, 2015,31(2):527-536.
[31] ACHARYA S, MOREAUX L. Numerical study of the flow past a turbine blade tip: effect of relative motion between blade and shroud[J]. Proceedings of ASME Turbo Expo 2012, 69192, 471-480.
[32] 牛茂升,臧述升.叶片转动对涡轮间隙内部流动影响的数值研究[J].力学学报,200941(5):628-634.
[33] 邵卫卫,季路成,程荣辉,等.叶尖泄漏掺混损失影响因素分析[J].航空动力学报,2007(10):1722-1729.
[34] 杨洪恺,张伟昊,邹正平.加载形式对涡轮叶尖泄漏损失的影响[J].工程热物理学报,2020,41(01):113-121.
[35] 魏佐君.高负荷涡轮端区非定常流动机理及损失控制研究[D].西安:西北工业大学, 2016.
[36] 李伟,乔渭阳,许开富,等.涡轮叶尖间隙泄漏流动主动控制数值模拟[J].航空动力学报, 2008(07):1260-1265.
[37] 高杰,郑群,许天帮,等.涡轮间隙泄漏涡破碎对损失的影响[J].航空学报,2014,35(05):1257-1264.
[38] 谭炜,张子卿,屈骁,等.跨音速涡轮定常与非定常叶尖泄漏流机理分析[J].风机技术,2021,63(02):1-11.
[39] POUAGARE M, WEINHOLD W. Tip leakage reduction through tip injection in turbomachines[J]. AIAA/ASME/SAE/ASEE 22nd Joint Propulsion Conference, 1986.
[40] 宋杨,乔渭阳.基于射流技术的涡轮叶尖泄漏流损失控制数值研究[J].燃气涡轮试验与研究,2017,30(05):18-25.
[41] 牛茂升,臧述升.机匣喷气量对涡轮间隙流动控制的影响[J].燃气轮机技术,2009,22(03):40-45.
[42] HAMIK M, WILLINGER R. An innovative passive tip-leakage control method for axial turbines: linear cascade wind tunnel results [J]. Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air, 2008,50056, 927-938.
[43] HUANG YD, ZHANG DS, WANG F, et al. Vortex suppression of the tip leakage flow over a NACA0009 hydrofoil via a passive jet induced by the double-control-hole[J]. Ocean Engineering, 2021,237:109647.
[44] 胡建军,张香兰,张铎,等.自发射流耦合凹槽抑制涡轮叶尖泄漏的数值研究[J].动力工程学报,2018,38(07):524-530.
[45] 牛茂升,臧述升.机匣切向喷气角对涡轮动叶间隙流动的影响[J].热能动力工程, 2010,25(03):254-258.
[46] KEY N L, ARTS T. Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions[J]. Journal of Turbomachinery, 2006,128(2):213-220.
[47] KRISHNABABU S K, DAWES W N, HODSON H P, et al. Aero-Thermal Investigations Of Tip Leakage Flow In Axial Flow Turbines: Part 2 Effects Of Relative Casing Motion[J]. ASME, 2007:739-747.
[48] NHO Y C, PARK J S, YONG J L, et al. Effects of turbine blade tip shape on total pressure loss and secondary flow of a linear turbine cascade[J]. International Journal of Heat & Fluid Flow, 2012,33(1):92-100.
[49] 杨佃亮,丰镇平,余小兵.凹槽叶顶非定常间隙泄漏流动和传热的数值研究[J].工程热物理学报,2009,30(04):591-594.
[50] 付云峰,孟睿,俞建阳,等. 球底蜂窝组合叶顶对涡轮叶尖泄漏流动的控制[J].工程热物理学报,2018,39(11):2382-2388.
[51] 王天壹,宣益民.阶梯形凹槽对涡轮叶顶泄漏流的影响[J].中国科学:技术科学, 2020,50(10):1288-1297.
[52] WANG Y, ZHANG W, HUANG D, et al. Control strategies for tip leakage vortex using inclined squealer rim in axial turbines[J]. Physics of Fluids, 2022,34(3):36101.
[53] 付云峰.蜂窝叶顶结构控制涡轮叶栅叶尖泄漏流动的机理研究[D].哈尔滨:哈尔滨工业大学, 2020.
[54] WEI ZJ, QIAO WY, SHI PP, et al. Tip-leakage flow loss reduction in a two-stage turbine using axisymmetric-casing contouring[J]. Chinese Journal of Aeronautics, 201427(5): 1111-1121.
[55] WISLER D, BEACHER B. Improved compressor performance using recessed clearance (trenches) over the rotor[J]. Nmr in Biomedicine, 2013,25(2):369, 378.
[56] BOHN D E, KUSTERER K, RKEN N S. Influence of endwall control in axial gaps[J]. Proceedings of ASME TURBOEXPO 2000,0472: V001T03A043 .
[57] OFFENBERG L, FISCHER J D, VANDE T. An experimental investigation of turbine case treatments[J]. Annual Review & Research in Biology, 2013,4(80):747-765.
[58] 高杰.船用燃气轮机涡轮叶顶间隙泄漏流动及控制技术研究[D].哈尔滨:哈尔滨工程大学,2014.
[59] 魏佐君,乔渭阳,时培杰,等.机匣造型设计对涡轮叶尖泄漏流损失的影响[J].航空动力学报,2015,30(003):714-725.
[60] KAVURMACIOGLU L A, SENEL C B, MARAL H, et al. Casing grooves to improve aerodynamic performance of a HP turbine blade[J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2018,76:194-203.
[61] SHUAI J, FU C, YU J, et al. Treatment and optimization of casing and blade tip for aerodynamic control of tip leakage flow in a turbine cascade[J]. Aerospace Science and Technology, 2019,86(MAR.):704-713.
[62] SUJUDI D, HAIMES R. Identification of swirling flow in 3-D vector fields[M]// https://doi.org/10.2514/6.1995-1715.
[63] 苏祥宇.跨音转子叶尖泄漏流动分离涡模拟研究及涡破碎现象分析[D].北京:清华大学,2019.
[64] BEHR T. Control of rotor tip leakage and secondary flow by casing air injection in unshrouded axial turbines[J]. diss dgenössische technische hochschule eth zürich nr, 2007.
[65] 邹正平,王松涛,刘火星,等.航空燃气轮机涡轮气体动力学[M].上海:上海交通大学出版社,2014.
[66] MATSUNUMA T, YOSHIDA H, IKI N, et al. Micro Gas Turbine With Ceramic Nozzle and Rotor[C]//: Asme Turbo Expo: Power for Land, Sea, & Air, 2006.
[67] 夏晨,黄国平,邱建.某微型发动机轴流涡轮与向心涡轮的气动性能及尺寸对比分析[J].航空动力学报,2011,026(003):489-497.
[68] 杜建一,王云,徐建中.分布式能源系统与微型燃气轮机的发展与应用[J].工程热物理学报,2004(05):68-70.
[69] 张远森.微型涡轮发电机双级轴流涡轮设计[D].南京:南京航空航天大学,2012.
[70] GREITZER E M, TAN C S, GRAF M B. Internal Flow: Concepts and Applications[J]. New York: Cambridge University Press, 2004.
[71] WEI ZJ, QIAO WY, SHI PJ, et al. Influence of Turbulence Modeling on the Secondary Flow Prediction[C]. International symposium on jet propulsion and power engineering, Xi'an(CN), 2012.
[72] 邹正平,綦蕾,李维,等.上游尾迹与涡轮转子泄漏流相互作用数值模拟[J].航空动力学报,2010(01):58-66.

所在学位评定分委会
力学与航空航天工程系
国内图书分类号
V231.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336005
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
赵晨彦. 轴流涡轮叶尖泄漏流损失分析及控制[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930335-赵晨彦-力学与航空航天(5980KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[赵晨彦]的文章
百度学术
百度学术中相似的文章
[赵晨彦]的文章
必应学术
必应学术中相似的文章
[赵晨彦]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。