中文版 | English
题名

新型低成本的农业多光谱相机的设计和应用

其他题名
DESIGN AND APPLICATION OF A NOVEL LOW-COST MULTI-SPECTRAL CAMERA FOR AGRICULTURE
姓名
姓名拼音
WANG Liang
学号
11930336
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
洪小平
导师单位
系统设计与智能制造学院
论文答辩日期
2022-05-10
论文提交日期
2022-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,伴随着农业自动化和农业精准化的发展与普及,农业生产的效率取
得了巨大的改进,农产品的生产质量得到了极大的改善,并且越来越多的自动化
农业设备和精准农业设备被应用在农业的生长管理过程中。在精准农业的农作物
生长管理过程中,有效的、精准的农作物生长健康数据采集和分析起着关键的作
用,尤其是多光谱图像数据的采集和应用。现阶段主要使用无人机搭载多光谱相
机的方法用于农作物健康监测,该方法能够获取农作物和果树的光谱信息用于农
作物和果树健康监测,但是该方法在果园果树健康监测应用中存在一些缺点,比
如只能采集果树冠层以上的数据,不能从整棵果树的三维角度进行健康分析,此
外,该方法不能很好地提供果园中果树的位置信息,不利于在农业自动化过程中
的针对性的果树管理,如精准施肥和灌溉等工作。并且,受制于多光谱和高光谱
相机的价格昂贵等原因,其在精准农业中一直未得到广泛的应用普及。
基于上述背景和在果园场景下果树健康监测应用中的痛点,本课题围绕如何
设计一台多模态光谱相机解决上述痛点并应用于果园场景下的果树健康监测和果
树定位展开工作。首先,该课题研制并搭建了一辆搭载新型低成本的三维多光谱
数据采集系统的果园机器人,能够实现高时空分辨率,有效光谱分辨率的三维实
时多模态数据采集,具有数据采集丰富、成本低等优势,能够解决无人机搭载光谱
相机只能采集果树冠层信息的问题,并在果园场景进行了实地的数据采集和应用,
此外,基于果园应用场景提出了一套多光谱果园三维重建和单棵树水平的果树分
割算法,实现了精准鲁棒的果园三维多光谱建图和单棵果树定位。该课题能够实
现果树丰富的多维度数据采集从而进行果树的健康监测并定位不健康果树,未来
结合其他果园自动化设备,如自动化施肥与喷雾,能够有效实现果园的精准化管
理。
 

其他摘要

In recent years, with the development of agricultural automation and agricultural precision, the effciency of agricultural production has been greatly improved, the production quality of agricultural products has been greatly improved, and more and more automated agricultural equipment and precision agricultural equipment have been used in the growth management process of agriculture. In the process of crop growth management in precision agriculture, effective and accurate crop growth and health data collection and analysis play a key role, especially the collection and application of multi-spectral image data. At present, the method of multi-spectral camera mounted on drone is mainly used
for crop health monitoring. This method can obtain the spectral information of crops and fruit trees for crop and fruit tree health monitoring. However, this method has some shortcomings in the application of orchard fruit tree health monitoring. For example, only the
data above the canopy of the fruit tree can be collected, and the health analysis cannot be carried out from the three-dimensional perspective of the whole fruit tree. In addition, this method cannot provide the location information of the fruit trees in the orchard well, which is not conducive to targeted fruit tree management in the process of agricultural automation, such as precision fertilization and irrigation. Moreover, due to the high price of multi-spectral and hyper-spectral cameras, they have not been widely used in precision agriculture.
Based on the above background and the pain points in the application of fruit tree health monitoring in the orchard scene, this project focuses on how to design a multi-modal spectral camera to solve the above pain points and apply it to fruit tree health monitoring and fruit tree positioning in the orchard scene. First of all, this project developed and
built an orchard robot equipped with a novel low-cost 3D multi-spectral data acquisition system, which can realize 3D real-time multi-modal data acquisition with high temporal and spatial resolution and effective spectral resolution, which can solve the problem that the UAV equipped with spectral cameras can only collect the information of the canopy of
fruit trees, and this project has carried out data collection and application in the orchard scene. The reconstruction and single-tree-level fruit tree segmentation algorithm realizes accurate and robust 3D multi-spectral mapping of orchards and single fruit tree positioning. This project can realize the rich multi-dimensional data collection of fruit trees to
monitor the health of fruit trees and locate unhealthy fruit trees. In the future, combined with other orchard automation equipment, such as automatic fertilization and spraying, it can effectively realize the precise management of orchards.
 

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] PETTORELLI N, VIK J O, MYSTERUD A, et al. Using the satellite-derived NDVI to assessecological responses to environmental change[J]. Trends in ecology & evolution, 2005, 20(9):503-510.
[2] KOPAČKOVÁ-STRNADOVÁ V, KOUCKÁ L, JELÉNEK J, et al. Canopy top, height and photosynthetic pigment estimation using parrot sequoia multispectral imagery and the unmannedaerial vehicle (UAV)[J]. Remote Sensing, 2021, 13(4): 705.
[3] 马昊翔, 陈长成, 宋英强, 等. 青海省近 10 年草地植被覆盖动态变化及其驱动因素分析[J].水土保持研究, 2018, 25(6): 137-145.
[4] WALLACE A, NICHOL C, WOODHOUSE I. Recovery of forest canopy parameters by inversion of multispectral LiDAR data[J]. Remote Sensing, 2012, 4(2): 509-531.
[5] SU Y, GUO Q, JIN S, et al. The development and evaluation of a backpack LiDAR system foraccurate and effcient forest inventory[J]. IEEE Geoscience and Remote Sensing Letters, 2020,18(9): 1660-1664.
[6] 张智刚, 罗锡文, 周志艳, 等. 久保田插秧机的 GPS 导航控制系统设计[J]. 农业机械学报,2006, 37(7): 95-97.
[7] BECHAR A, VIGNEAULT C. Agricultural robots for field operations. Part 2: Operations andsystems[J]. Biosystems engineering, 2017, 153: 110-128.
[8] KAMIENSKI C, SOININEN J P, TAUMBERGER M, et al. Smart water management platform:IoT-based precision irrigation for agriculture[J]. Sensors, 2019, 19(2): 276.
[9] FAGUA J C, JANTZ P, RODRIGUEZ-BURITICA S, et al. Integrating LiDAR, multispectraland SAR data to estimate and map canopy height in tropical forests[J]. Remote Sensing, 2019,11(22): 2697.
[10] BENDER A, WHELAN B, SUKKARIEH S. A high-resolution, multimodal data set for agricultural robotics: A Ladybird’s-eye view of Brassica[J]. Journal of Field Robotics, 2020, 37(1):73-96.
[11] TREMBLAY J F, BÉLAND M, GAGNON R, et al. Automatic three-dimensional mapping fortree diameter measurements in inventory operations[J]. Journal of Field Robotics, 2020, 37(8):1328-1346.
[12] DONG W, ROY P, ISLER V. Semantic mapping for orchard environments by merging two-sidesreconstructions of tree rows[J]. Journal of Field Robotics, 2020, 37(1): 97-121.
[13] HÄNI N, ROY P, ISLER V. A comparative study of fruit detection and counting methods foryield mapping in apple orchards[J]. Journal of Field Robotics, 2020, 37(2): 263-282.
[14] KING A. Technology: The future of agriculture[J]. Nature, 2017, 544(7651): S21-S23.
[15] DAS J, CROSS G, QU C, et al. Devices, systems, and methods for automated monitoringenabling precision agriculture[C]//2015 IEEE International Conference on Automation Scienceand Engineering (CASE). IEEE, 2015: 462-469.
[16] FISCHER C, KAKOULLI I. Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications[J]. Studies in Conservation, 2006, 51(sup1):3-16.
[17] BRAUERS J, AACH T. A color filter array based multispectral camera[C]//12. Workshop Farbbildverarbeitung. Ilmenau, 2006.
[18] EVERITT J, ESCOBAR D, VILLARREAL R, et al. Airborne video systems for agriculturalassessment[J]. Remote Sensing of Environment, 1991, 35(2-3): 231-242.
[19] HUANG Y, LAN Y, HOFFMANN W. Use of airborne multi-spectral imagery in pest management systems[J]. Agricultural Engineering International: CIGR Journal, 2008.
[20] GREEN R O, EASTWOOD M L, SARTURE C M, et al. Imaging spectroscopy and the airbornevisible/infrared imaging spectrometer (AVIRIS)[J]. Remote sensing of environment, 1998, 65(3): 227-248.
[21] CHEN J M, LEBLANC S G, MILLER J R, et al. Compact Airborne Spectrographic Imager(CASI) used for mapping biophysical parameters of boreal forests[J]. Journal of GeophysicalResearch: Atmospheres, 1999, 104(D22): 27945-27958.
[22] MÄKYNEN J, HOLMLUND C, SAARI H, et al. Unmanned aerial vehicle (UAV) operatedmegapixel spectral camera[C]//Electro-Optical Remote Sensing, Photonic Technologies, andApplications V: volume 8186. International Society for Optics and Photonics, 2011: 81860Y.
[23] FRANZINI M, RONCHETTI G, SONA G, et al. Geometric and radiometric consistency ofparrot sequoia multispectral imagery for precision agriculture applications[J]. Applied Sciences,2019, 9(24): 5314.
[24] 孙鑫, 白加光, 王忠厚, 等. 一种机载多光谱相机的光学系统设计[J]. 光子学报, 2009, 38(12): 3160-3164.
[25] 罗刚银, 王弼陡, 陈玉琦, 等. 可见近红外波段无人机载成像光谱仪设计[J]. 光子学报,2017, 46(9): 59-68.
[26] 曹丛峰, 方俊永, 赵冬. 基于滤光片阵列分光的无人机载多光谱相机研制[J]. 光学技术,2018, 44(1): 51-55.
[27] LIU Z, ZHANG F, HONG X. Low-cost retina-like robotic lidars based on incommensurablescanning[J]. IEEE/ASME Transactions on Mechatronics, 2021.
[28] AHMAD N, GHAZILLA R A R, KHAIRI N M, et al. Reviews on various inertial measurementunit (IMU) sensor applications[J]. International Journal of Signal Processing Systems, 2013, 1(2): 256-262.
[29] WIESSNER P, REZABEK F, HOLZINGER K. Intra-vehicular Data Sources[J]. Network,2021, 73.
[30] LIU Y, HUANG T S, FAUGERAS O D. Determination of camera location from 2-D to 3-D lineand point correspondences[J]. IEEE Transactions on pattern analysis and machine intelligence,1990, 12(1): 28-37.
[31] RICOLFE-VIALA C, SANCHEZ-SALMERON A J. Lens distortion models evaluation[J]. Applied optics, 2010, 49(30): 5914-5928.
[32] ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on patternanalysis and machine intelligence, 2000, 22(11): 1330-1334.
[33] VEL’AS M, ŠPANĚL M, MATERNA Z, et al. Calibration of rgb camera with velodyne lidar[J]. 2014.
[34] PUSZTAI Z, HAJDER L. Accurate calibration of LiDAR-camera systems using ordinary boxes[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. 2017:394-402.
[35] TAYLOR Z, NIETO J. Motion-based calibration of multimodal sensor extrinsics and timingoffset estimation[J]. IEEE Transactions on Robotics, 2016, 32(5): 1215-1229.
[36] RUSINKIEWICZ S, LEVOY M. Effcient variants of the ICP algorithm[C]//Proceedings thirdinternational conference on 3-D digital imaging and modeling. IEEE, 2001: 145-152.
[37] HAUG S, OSTERMANN J. A crop/weed field image dataset for the evaluation of computervision based precision agriculture tasks[C]//European conference on computer vision. Springer,2014: 105-116.
[38] LU Y, YOUNG S. A survey of public datasets for computer vision tasks in precision agriculture[J]. Computers and Electronics in Agriculture, 2020, 178: 105760.
[39] CHEBROLU N, LOTTES P, SCHAEFER A, et al. Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields[J]. The International Journal of RoboticsResearch, 2017, 36(10): 1045-1052.
[40] CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneouslocalization and mapping: Toward the robust-perception age[J]. IEEE Transactions on robotics,2016, 32(6): 1309-1332.
[41] SCHONBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//Proceedings of theIEEE conference on computer vision and pattern recognition. 2016: 4104-4113.
[42] KHAIRUDDIN A R, TALIB M S, HARON H. Review on simultaneous localization and mapping (SLAM)[C]//2015 IEEE international conference on control system, computing and engineering (ICCSCE). IEEE, 2015: 85-90.
[43] TAKETOMI T, UCHIYAMA H, IKEDA S. Visual SLAM algorithms: A survey from 2010 to2016[J]. IPSJ Transactions on Computer Vision and Applications, 2017, 9(1): 1-11.
[44] HESS W, KOHLER D, RAPP H, et al. Real-time loop closure in 2D LIDAR SLAM[C]//2016IEEE international conference on robotics and automation (ICRA). IEEE, 2016: 1271-1278.
[45] HUANG S, DISSANAYAKE G. Convergence and consistency analysis for extended Kalmanfilter based SLAM[J]. IEEE Transactions on robotics, 2007, 23(5): 1036-1049.
[46] GRISETTI G, KÜMMERLE R, STACHNISS C, et al. A tutorial on graph-based SLAM[J].IEEE Intelligent Transportation Systems Magazine, 2010, 2(4): 31-43.
[47] LATEGAHN H, GEIGER A, KITT B. Visual SLAM for autonomous ground vehicles[C]//2011IEEE International Conference on Robotics and Automation. IEEE, 2011: 1732-1737.
[48] ZHU Y, ZHENG C, YUAN C, et al. Camvox: A low-cost and accurate lidar-assisted visual slamsystem[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE,2021: 5049-5055.
[49] MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORB-SLAM: a versatile and accuratemonocular SLAM system[J]. IEEE transactions on robotics, 2015, 31(5): 1147-1163.
[50] MUR-ARTAL R, TARDÓS J D. Orb-slam2: An open-source slam system for monocular, stereo,and rgb-d cameras[J]. IEEE transactions on robotics, 2017, 33(5): 1255-1262.
[51] ZHANG J, SINGH S. LOAM: Lidar Odometry and Mapping in Real-time.[C]//Robotics: Science and Systems: volume 2. Berkeley, CA, 2014: 1-9.
[52] 蒙继华, 吴炳方, 杜鑫, 等. 遥感在精准农业中的应用进展及展望[J]. 国土资源遥感, 2011,3(1): 7.
[53] 郭铌. 植被指数及其研究进展[J]. 干旱气象, 2003, 21(4): 71.
[54] 邓书斌, 陈秋锦. 植被波谱特征与植被指数综述[J]. 中国遥感应用协会 2010 年会暨区域遥感发展与产业高层论坛论文集, 2010.
[55] XU W, ZHANG F. Fast-lio: A fast, robust lidar-inertial odometry package by tightly-couplediterated kalman filter[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3317-3324.
[56] XU W, CAI Y, HE D, et al. Fast-lio2: Fast direct lidar-inertial odometry[J]. arXiv preprintarXiv:2107.06829, 2021.
[57] SHENDRYK I, BROICH M, TULBURE M G, et al. Bottom-up delineation of individual treesfrom full-waveform airborne laser scans in a structurally complex eucalypt forest[J]. RemoteSensing of Environment, 2016, 173: 69-83.
[58] KOCH B, KATTENBORN T, STRAUB C, et al. Segmentation of forest to tree objects[J].Forestry applications of airborne laser scanning, 2014: 89-112.
[59] SOLBERG S, NAESSET E, BOLLANDSAS O M. Single tree segmentation using airborne laserscanner data in a structurally heterogeneous spruce forest[J]. Photogrammetric Engineering &Remote Sensing, 2006, 72(12): 1369-1378.
[60] SANKARAN S, MAJA J M, BUCHANON S, et al. Huanglongbing (citrus greening) detectionusing visible, near infrared and thermal imaging techniques[J]. Sensors, 2013, 13(2): 2117-2130.

所在学位评定分委会
系统设计与智能制造学院
国内图书分类号
TM301.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336009
专题工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
王良. 新型低成本的农业多光谱相机的设计和应用[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930336-王良-系统设计与智能制(22124KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王良]的文章
百度学术
百度学术中相似的文章
[王良]的文章
必应学术
必应学术中相似的文章
[王良]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。