中文版 | English
题名

潮汐作用引起的盐度变化对河水中溶解性有机物组成和性质影响

其他题名
INFLUENCE OF SALINITY CHANGES CAUSED BY TIDAL ACTION ON THE COMPOSITION AND PROPERTIES OF DISSOLVED ORGANIC MATTER IN RIVERS
姓名
姓名拼音
WANG Chen
学号
12032358
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
刘崇炫
导师单位
环境科学与工程学院
论文答辩日期
2022-05-06
论文提交日期
2022-06-18
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

   河流是地球水文循环中不可或缺的一个环节,承担着将物质从陆地输送到海洋的重要使命。河流的近海河段由于受到海洋潮汐作用的影响,盐度、溶解氧等性质以及水体中的物理、化学、生物反应等过程往往会随之发生变化。已有研究表明,河水和海水混合所导致的盐度变化,会降低水体中DOM的稳定性,影响水体中有机物和痕量金属的迁移、转化。本研究通过一系列盐度梯度模拟实验来探究盐度变化对DOM性质、组成成分的影响,同时通过改变重金属类型和粘土种类及组成比例来研究河流中不同重金属和颗粒物与DOM的相互作用,以及盐度变化对这些相互作用的影响。

   研究结果表明,盐 度增加会促进DOM发生絮凝,影响水体中DOM的含量,特别是在低盐度的水体环境中,盐度升高导致DOM大量絮凝,减少水体中DOM含量,而在高盐度水体中DOM含量随盐度变化较小。盐度的改变还会影响DOM的组成成分,比如盐度增加会诱导更多的荧光组分发生絮凝,导致荧光组分的相对浓度减少,非荧光组分的相对浓度增加。由于粘土和重金属与DOM之间存在相互作用,粘土或重金属的存在会进一步增强DOM在 盐度作用下的絮凝。在低盐度水体中,盐度增加,粘土对DOM的吸附作用增强,重金属对DOM絮凝的促进作用减弱,在高盐度水体中,重金属或粘土的存在对DOM浓度和性质随盐度的变化影响不大。粘土和重金属同时存在时,粘土对DOM絮凝的影响起主要作用。盐度诱导的DOM絮凝还会影响水体中的重金属浓度,对于大多数重金属而言,盐度增加会促进DOM与重金属之间的络合,导致水体中重金属离子浓度逐渐减小。

       DOM在物质迁移、转化和有机地球化学循环中发挥重要的作用,本研究揭示了盐度改变时河流DOM组成、性质的变化,以及不同重金属和颗粒物与DOM之间相互作用的变化,这对于进一步理解潮汐作用对河流DOM组成及性质产生的影响,深入认识DOM自身的转化和输送过程、水体中金属的迁移转化过程都具有重要意义。

其他摘要

     Rivers are an integral part of the hydrological cycle on earth, carrying materials from land to sea. Due to the influence of tidal action, the nature of water and some physical and biogeochemical reactions change in the coastal section of the river. Studies have shown that the salinity changes caused by the mixing of fresh water and seawater decreased the stability of DOM and affected the migration and transformation of organic matter and trace metals. In this study, a series of salinity gradient simulation experiments were conducted to explore the influence of salinity changes on DOM composition and properties, and to study the influence of salinity changes on DOM-clay-heavy metal interactions by varying the contents and types of clay and metals.

     The results showed that the increase of salinity promoted the flocculation of DOM and affected the content of DOM in water. In the low salinity environment, the content of DOM decreased due to a large amount of flocculation caused by increased salinity, while the content tended to be stable with the increase of salinity in the high salinity water. The changes of salinity also affected the composition of DOM. For example, the increase of salinity promoted the flocculation of more fluorescent compounds, resulting in a decrease in the relative concentration of fluorescent compounds and an increase in the relative concentration of non-fluorescent compounds. Due to the interactions with DOM, clay and heavy metals enhanced the flocculation of DOM under the action of salinity. In the low salinity environment, the amount of DOM adsorbed by clay increased with the rise of salinity, and the promoting effect of heavy metals was weakened. In the high salinity water, the influence of heavy metals or clay on the concentration and properties of DOM was little variation with the changes of salinity. Clay played a major role in the flocculation of DOM when both clay and heavy metals were present. The rise of salinity also affected the concentration of heavy metals in water. For most heavy metals, the increase of salinity promoted the complexation between DOM and metals, leading to a decrease in the concentration of heavy metal ions in water.

     DOM plays an important role in the transport and transformation of substances and the biogeochemical cycle. This study revealed the effects of salinity changes on the composition and properties of DOM and the interactions between clay, heavy metals and DOM. It is of great significance to further understand the influence of tidal action on the changes of DOM in rivers and the transformation and transport process of DOM and heavy metals in rivers.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] ZSOLNAY Á. Dissolved organic matter: artefacts, definitions, and functions[J]. Geoderma, 2003, 113(3):187-209.
[2] REUTER J H, PERDUE E M. Importance of heavy metal-organic matter interactions in natural waters[J]. Geochimica et Cosmochimica Acta, 1977, 41(2):325 -334.
[3] SHAO TT, WANG T. Effects of land use on the characteristics and composition of fluvial chromophoric dissolved organic matter (CDOM) in the Yiluo River watershed, China[J]. Ecological Indicators, 2020(114):106332.
[4] ARCHIBALD J P, SANTOS I R, DAVIS K L. Diel versus tidal cycles of chromophoric dissolved organic matter (CDOM) and radon in a coral reef in the Great Barrier Reef[J]. Regional Studies in Marine Science, 2019(29):100659.
[5] KATSOYIANNIS A, SAMARA C. The fate of dissolved organic carbon (DOC) in the wastewater treatment process and its importance in the removal of wastewater contaminants[J]. Environmental Science and Pollution Research - International, 2007, 14(5):284-292.
[6] LI JC, WANG LY, GENG JJ, et al. Distribution and removal of fluorescent dissolved organic matter in 15 municipal wastewater treatment plants in China[J]. Chemosphere, 2020(251):126375.
[7] CHEN W, TENG CY, QIAN C, et al. Characterizing properties and environmental behaviors of dissolved organic matter using two-dimensional correlation spectroscopic analysis[J]. Environmental Science & Technology, 2019, 53(9):4683 -4694.
[8] XU HC, YAN MQ, LI WT, et al. Dissolved organic matter binding with Pb(II) as characterized by differential spectra and 2D UV–FTIR heterospectral correlation analysis[J]. Water Research, 2018, 144. (2018):435-443.
[9] YLÖSTALO P, SEPPÄLÄ J, KAITALA S, et al. Loadings of dissolved o rganic matter and nutrients from the Neva River into the Gulf of Finland – Biogeochemical composition and spatial distribution within the salinity gradient [J]. Marine Chemistry, 2016, 186: 58-71.
[10] GUO YC, LIU CH, YE RK, et al. Advances on water quality detection by UV-Vis spectroscopy[J]. Applied Sciences, 2020, 10(19):6874-6874.
[11] HUANG M, LI ZW, LUO NL, et al. Application potential of biochar in environment: Insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals[J]. Science of the Total Environment, 2019, 646:220-228.
[12] LI LE, WANG Y, ZHANG WJ, et al. New advances in fluorescence excitation-emission matrix spectroscopy for the characterization of dissolved organic matter in drinking water treatment: A review[J]. Chemical Engineering Journal, 2020, 381(C): 122676.
[13] ZHANG BL, SHAN C, WANG S, et al. Unveiling the transformation of dissolved organic matter during ozonation of municipal secondary effluent based on FT-ICR-MS and spectral analysis[J]. Water Research, 2020, 188:1322.
[14] ASMALA E, BOWERS D G, AUTIO R, et al. Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(10):1919-1933.
[15] YU X, XIAO B, LIU XY, et al. Retrieval of remotely sensed sea surface salinity using MODIS data in the Chinese Bohai Sea[J]. International Journal of Remote Sensing, 2017, 38(23): 7357-7373.
[16] LEE S A, KIM G. Sources, fluxes, and behaviors of fluorescent dissolved organic matter (FDOM) in the Nakdong River Estuary, Korea[J]. Biogeosciences, 2018, 15(4):1115-1122.
[17] 叶君, 姚鹏, 徐亚宏, 等. 长江口盐度梯度下不同形态碳的分布、来源与混合行为[J]. 海洋学报, 2019, 41(04):15-26.
[18] MAVI M S, MARSCHNER P, CHITTLEBOROUGH D J, et al. Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture[J]. Soil Biology and Biochemistry, 2012, 45:8 -13.
[19] XU W, GAO Q, HE C, et al. Using ESI FT-ICR MS to characterize dissolved organic matter in salt lakes with different salinity[J]. Environmental Science & Technology, 2020, 54(20): 12929–12937.
[20] LORES E M, PENNOCK J R. The effect of salinity on binding of Cd, Cr, Cu and Zn to dissolved organic matter[J]. Chemosphere, 1998, 37(5):861 -874.
[21] SCHAFER T, POWERS L, GONSIOR M, et al. Contrasting responses of DOM leachates to photodegradation observed in plant species collected along an estuarine salinity gradient[J]. Biogeochemistry, 2021, 152:291–307.
[22] FAN YR, ZHENG CL, HUO AD, et al. Investigating the binding properties between antimony(V) and dissolved organic matter (DOM) under different pH conditions during the soil sorption process using fluorescence and FTIR spectroscopy[J]. Ecotoxicology and Environmental Safety, 2019(181): 34-42.
[23] LI BR, LIAO P, LIU P, et al. Formation, aggregation, and transport of NOM–Cr (III) colloids in aquatic environments[J]. Environmental Science: Nano, 2022, 9:1133 -1145.
[24] LIU MX, HAN XK, LIU CQ, et al. Differences in the spectroscopic characteristics of wetland dissolved organic matter binding with Fe 3+, Cu2+, Cd2+, Cr3+ and Zn2+[J]. Science of the Total Environment, 2021, 800: 149476-149476.
[25] LI BR, LIAO P, XIE L, et al. Reduced NOM triggered rapid Cr(VI) reduction and formation of NOM-Cr(III) colloids in anoxic environments[J]. Water Research, 2020, 181(C): 115923.
[26] RAVICHANDRAN M. Interactions between mercury and dissolved organic matter—a review[J]. Chemosphere, 2004, 55(3):319-331.
[27] BURROWS A C. Adsorption of freshwater dissolved organic matter to clay and polyethylene particles[D]. University of Minnesota, 2019, 22618789.
[28] MARSH A, HEATH A, PATUREAU P, et al. Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals[J]. Applied Clay Science, 2018, 166:250 -261.
[29] LI GL, ZHOU CH, FIORE S, et al. Interactions between microorganisms and clay minerals: New insights and broader applications[J]. Applied Clay Science, 2019, 177:91-113.
[30] CHURCHMAN G J, LOWE D J. Alteration, formation, and occurrence of minerals in soils[M]. CRC Press, 2012.
[31] HUGHES J C, BROWN G. A crystallinity index for soil kaolins and its relation to parent rock, climate and soil maturity[J]. Journal of Soil Science, 1979, 30(3):557 -563.
[32] MESTDAGH M M, VIELVOYE L, HERBILLON A J. Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content[J]. Clay Minerals, 1980, 15(1):1-13.
[33] RONG NN, CHEN CC, OUYANG KW, et al. Adsorption characteristics of directional cellulose nanofiber/chitosan/montmorillonite aerogel as adsorbent for wastewater treatment[J]. Separation and Purification Technology, 2021, 274:119120.
[34] KAYA A, YUKSELEN Y. Zeta potential of clay minerals and quartz contaminated by heavy metals[J]. Canadian Geotechnical Journal, 2005, 42(5):1280 -1289.
[35] TIETJEN T, VÄHÄTALO A V, WETZEL R G. Effects of clay mineral turbidity on dissolved organic carbon and bacterial production[J]. Aquatic sciences, 2005, 67(1):51-60.
[36] WEI PY, XU FC, FU HY, et al. Impact of origin and structure on the aggregation behavior of natural organic matter[J]. Chemosphere, 2020, 248(C):125990.
[37] XU FC, YAO YX, ALVAREZ PJJ, et al. Specific ion effects on the aggregation behavior of aquatic natural organic matter [J]. Journal of Colloid and Interface Science, 2019, 556:734-742.
[38] SU YL, CHEN FZ, LIU ZW. Comparison of optical properties of chromophoric dissolved organic matter (CDOM) in alpine lakes above or below the tree line: insights into sources of CDOM[J]. Photochemical & Photobiological Sciences, 2015, 14(5):1047–1062.
[39] WEN ZD, SONG KS, SHANG YX, et al. Differences in the distribution and optical properties of DOM between fresh and saline lakes in a semi-arid area of Northern China[J]. Aquatic Sciences, 2018, 80(2):1-12.
[40] ZHOU YP, HE D, HE C, et al. Spatial changes in molecular composition of dissolved organic matter in the Yangtze River Estuary: Implications for the seaward transport of estuarine DOM[J]. Science of The Total Environment, 2020, 759:143531.
[41] SEPP M, KÕIV T, NÕGES P, et al. The role of catchment soils and land cover on dissolved organic matter (DOM) properties in temperate lakes[J]. Journal of Hydrology, 2019, 570: 281-291.
[42] LI Y, XU C, ZHANG WL, et al. Response of bacterial community in composition and function to the various DOM at river confluences in the urban area[J]. Water Research, 2020, 169(C):115293.
[43] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence Excitation−Emission Matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24):5701–5710.
[44] STEDMON C A, MARKAGER S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis[J]. Limnology and Oceanography, 2005, 50(2): 686-697.
[45] BORGGAARD O K, HOLM P E, STROBEL B W. Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: A review[J]. Geoderma, 2019, 343:235-246.
[46] ABDELLAOUI Y, OLGUÍN M T, ABATAL M, et al. Comparison of the divalent heavy metals (Pb, Cu and Cd) adsorption behavior by montmorillonite-KSF and their calcium- and sodium-forms[J]. Superlattices and Microstructures, 2017, 127:165-175.
[47] ZHANG SQ, HOU WG. Adsorption behavior of Pb(II) on montmorillonite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 320(1):92-97.
[48] LIU YX, ALESSI D S, FLYNN S L, et al. Acid-base properties of kaolinite, montmorillonite and illite at marine ionic strength[J]. Chemical Geology, 2018, 483:191-200.
[49] WAINIPEE W, CUADROS J, SEPHTON M A, et al. The effects of oil on As(V) adsorption on illite, kaolinite, montmorillonite and chlorite[J]. Geochimica et Cosmochimica Acta, 2013, 121:487-502.
[50] ZHANG JF, ZHANG QH, MAA J P Y. Coagulation processes of kaolinite and montmorillonite in calm, saline water[J]. Estuarine, Coastal and Shelf Science, 2018, 202(5):18-29.

所在学位评定分委会
环境科学与工程学院
国内图书分类号
X522
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336011
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
王晨. 潮汐作用引起的盐度变化对河水中溶解性有机物组成和性质影响[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032358-王晨-环境科学与工程学(3959KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王晨]的文章
百度学术
百度学术中相似的文章
[王晨]的文章
必应学术
必应学术中相似的文章
[王晨]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。