[1] Beletskaya I P,Cheprakov A V. The Complementary Competitors: Palladium and Copper in C–N Cross-Coupling Reactions[J]. Organometallics, 2012, 31(22):7753-7808.
[2] Bhunia S, Pawar G G, Kumar S V, et al. Selected Copper-Based Reactions for C−N, C−O, C−S, and C−C Bond Formation[J]. Angewandte Chemie International Edition, 2017, 56(51):16136-16179.
[3] Desnoyer A N,Love J A. Recent advances in well-defined, late transition metal complexes that make and/or break C–N, C–O and C–S bonds[J]. Chemical Society Reviews, 2017, 46(1):197-238.
[4] Rotella D P. The Critical Role of Organic Chemistry in Drug Discovery[J]. ACS Chemical Neuroscience, 2016, 7(10):1315-1316.
[5] Grygorenko O O, Volochnyuk D M, Ryabukhin S V, et al. The Symbiotic Relationship Between Drug Discovery and Organic Chemistry[J]. Chemistry – A European Journal, 2020, 26(6):1196-1237.
[6] Heravi M M, Kheilkordi Z, Zadsirjan V, et al. Buchwald-Hartwig reaction: An overview[J]. Journal of Organometallic Chemistry, 2018, 861:17-104.
[7] Forero-Cortés P A,Haydl A M. The 25th Anniversary of the Buchwald–Hartwig Amination: Development, Applications, and Outlook[J]. Organic Process Research & Development, 2019, 23(8):1478-1483.
[8] Biscoe M R, Barder T E, Buchwald S L. Electronic Effects on the Selectivity of Pd-Catalyzed CN Bond-Forming Reactions Using Biarylphosphine Ligands: The Competitive Roles of Amine Binding and Acidity[J]. Angewandte Chemie International Edition, 2007, 46(38):7232-7235.
[9] Huang X, Anderson K W, Zim D, et al. Expanding Pd-Catalyzed C−N Bond-Forming Processes: The First Amidation of Aryl Sulfonates, Aqueous Amination, and Complementarity with Cu-Catalyzed Reactions[J]. Journal of the American Chemical Society, 2003, 125(22):6653-6655.
[10] Buitrago Santanilla A, Regalado Erik L, Pereira T, et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules[J]. Science, 2015, 347(6217):49-53.
[11] Tu N P, Dombrowski A W, Goshu G M, et al. High-Throughput Reaction Screening with Nanomoles of Solid Reagents Coated on Glass Beads[J]. Angewandte Chemie International Edition, 2019, 58(24):7987-7991.
[12] Meuwly M. Machine Learning for Chemical Reactions[J]. Chemical Reviews, 2021, 121(16):10218-10239.
[13] Reid J P,Sigman M S. Holistic prediction of enantioselectivity in asymmetric catalysis[J]. Nature, 2019, 571(7765):343-348.
[14] Zahrt Andrew F, Henle Jeremy J, Rose Brennan T, et al. Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning[J]. Science, 2019, 363(6424):eaau5631.
[15] Hartwig J F,Paul F. Oxidative Addition of Aryl Bromide after Dissociation of Phosphine from a Two-Coordinate Palladium(0) Complex, Bis(tri-o-tolylphosphine)Palladium(0)[J]. Journal of the American Chemical Society, 1995, 117(19):5373-5374.
[16] Guram A S, Rennels R A, Buchwald S L. A Simple Catalytic Method for the Conversion of Aryl Bromides to Arylamines[J]. Angewandte Chemie International Edition in English, 1995, 34(12):1348-1350.
[17] Louie J,Hartwig J F. Palladium-catalyzed synthesis of arylamines from aryl halides. Mechanistic studies lead to coupling in the absence of tin reagents[J]. Tetrahedron Letters, 1995, 36(21):3609-3612.
[18] Dorel R, Grugel C P, Haydl A M. The Buchwald–Hartwig Amination After 25 Years[J]. Angewandte Chemie International Edition, 2019, 58(48):17118-17129.
[19] Surry D S,Buchwald S L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user's guide[J]. Chemical Science, 2011, 2(1):27-50.
[20] Job G E,Buchwald S L. Copper-Catalyzed Arylation of β-Amino Alcohols[J]. Organic Letters, 2002, 4(21):3703-3706.
[21] Altman R A, Hyde A M, Huang X, et al. Orthogonal Pd- and Cu-Based Catalyst Systems for C- and N-Arylation of Oxindoles[J]. Journal of the American Chemical Society, 2008, 130(29):9613-9620.
[22] Strieth-Kalthoff F, Sandfort F, Segler M H S, et al. Machine learning the ropes: principles, applications and directions in synthetic chemistry[J]. Chemical Society Reviews, 2020, 49(17):6154-6168.
[23] Machine Learning[J]. The Journal of Physical Chemistry C, 2018, 122(4):1889-1889.
[24] Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules[J]. J. Chem. Inf. Comput. Sci., 1988, 28:31-36.
[25] Heller S, McNaught A, Stein S, et al. InChI - the worldwide chemical structure identifier standard[J]. Journal of Cheminformatics, 2013, 5(1):7.
[26] Sandfort F, Strieth-Kalthoff F, Kühnemund M, et al. A Structure-Based Platform for Predicting Chemical Reactivity[J]. Chem, 2020, 6(6):1379-1390.
[27] Rogers D,Hahn M. Extended-Connectivity Fingerprints[J]. Journal of Chemical Information and Modeling, 2010, 50(5):742-754.
[28] Reid J P, Proctor R S J, Sigman M S, et al. Predictive Multivariate Linear Regression Analysis Guides Successful Catalytic Enantioselective Minisci Reactions of Diazines[J]. Journal of the American Chemical Society, 2019, 141(48):19178-19185.
[29] Ahneman D T, Estrada J G, Lin S, et al. Predicting reaction performance in C–N cross-coupling using machine learning[J]. Science, 2018, 360(6385):186.
[30] Rupp M, Tkatchenko A, Müller K-R, et al. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning[J]. Physical Review Letters, 2012, 108(5):058301.
[31] Brethomé A V, Fletcher S P, Paton R S. Conformational Effects on Physical-Organic Descriptors: The Case of Sterimol Steric Parameters[J]. ACS Catalysis, 2019, 9(3):2313-2323.
[32] Harper K C, Bess E N, Sigman M S. Multidimensional steric parameters in the analysis of asymmetric catalytic reactions[J]. Nature Chemistry, 2012, 4(5):366-374.
[33] Graziano G. Fingerprints of molecular reactivity[J]. Nature Reviews Chemistry, 2020, 4(5):227-227.
[34] Wender P A,Miller B L. Synthesis at the molecular frontier[J]. Nature, 2009, 460(7252):197-201.
[35] Muratov E N, Bajorath J, Sheridan R P, et al. QSAR without borders[J]. Chemical Society Reviews, 2020, 49(11):3525-3564.
[36] Chan B. Use of Low-Cost Quantum Chemistry Procedures for Geometry Optimization and Vibrational Frequency Calculations: Determination of Frequency Scale Factors and Application to Reactions of Large Systems[J]. Journal of Chemical Theory and Computation, 2017, 13(12):6052-6060.
[37] Selekman J, Qiu J, Tran K, et al. High-Throughput Automation in Chemical Process Development[J]. Annual Review of Chemical and Biomolecular Engineering, 2017, 8.
[38] Macarron R, Banks M N, Bojanic D, et al. Impact of high-throughput screening in biomedical research[J]. Nat Rev Drug Discov, 2011, 10(3):188-95.
[39] McMullen J P,Jensen K F. Integrated microreactors for reaction automation: new approaches to reaction development[J]. Annual review of analytical chemistry, 2010, 3:19-42.
[40] Gaunt M J, Janey J M, Schultz D M, et al. Myths of high-throughput experimentation and automation in chemistry[J]. Chem, 2021, 7(9):2259-2260.
[41] Krska S W, DiRocco D A, Dreher S D, et al. The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis[J]. Accounts of Chemical Research, 2017, 50(12):2976-2985.
[42] Takáts Z, Wiseman Justin M, Gologan B, et al. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization[J]. Science, 2004, 306(5695):471-473.
[43] Ingoglia B T, Wagen C C, Buchwald S L. Biaryl monophosphine ligands in palladium-catalyzed C–N coupling: An updated User's guide[J]. Tetrahedron, 2019, 75(32):4199-4211.
[44] Huang F-D, Xu C, Lu D-D, et al. Pd-PEPPSI-IPentAn Promoted Deactivated Amination of Aryl Chlorides with Amines under Aerobic Conditions[J]. The Journal of Organic Chemistry, 2018, 83(16):9144-9155.
[45] Fors B P,Buchwald S L. A Multiligand Based Pd Catalyst for C−N Cross-Coupling Reactions[J]. Journal of the American Chemical Society, 2010, 132(45):15914-15917.
[46] Vo G D,Hartwig J F. Palladium-Catalyzed Coupling of Ammonia with Aryl Chlorides, Bromides, Iodides, and Sulfonates: A General Method for the Preparation of Primary Arylamines[J]. Journal of the American Chemical Society, 2009, 131(31):11049-11061.
[47] Marion N, Ecarnot E C, Navarro O, et al. (IPr)Pd(acac)Cl: An Easily Synthesized, Efficient, and Versatile Precatalyst for C−N and C−C Bond Formation[J]. The Journal of Organic Chemistry, 2006, 71(10):3816-3821.
[48] Xie X, Zhang T Y, Zhang Z. Synthesis of Bulky and Electron-Rich MOP-type Ligands and Their Applications in Palladium-Catalyzed C−N Bond Formation[J]. The Journal of Organic Chemistry, 2006, 71(17):6522-6529.
[49] Fors B P, Krattiger P, Strieter E, et al. Water-Mediated Catalyst Preactivation: An Efficient Protocol for C−N Cross-Coupling Reactions[J]. Organic Letters, 2008, 10(16):3505-3508.
[50] Shen Q,Hartwig J F. [(CyPF-tBu)PdCl2]: An Air-Stable, One-Component, Highly Efficient Catalyst for Amination of Heteroaryl and Aryl Halides[J]. Organic Letters, 2008, 10(18):4109-4112.
修改评论