[1] Chen W, Zheng R, Baade PD, et al.Cancer statistics in China, 2015. CA: a cancer journal for clinicians. 2016; 66: 115-32.
[2] WEIDERPASS E, STEWART B W. World Cancer Report[J].2020
[3] Bosch F X, Ribes J, Díaz M, et al. Primary liver cancer: worldwide incidence and trends[J]. Gastroenterology, 2004, 127(5): S5-S16.
[4] Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. International journal of cancer, 2015, 136(5): E359-E386.
[5] Bruix J, Sherman M. Management of hepatocellular carcinoma: an update[J]. Hepatology (Baltimore, Md.), 2011, 53(3): 1020.
[6] White D L, Kanwal F, El–Serag H B. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review[J]. Clinical gastroenterology and hepatology, 2012, 10(12): 1342-1359. e2.
[7] Schiff's diseases of the liver[M]. John Wiley & Sons, 2017.
[8] Marrero J A, Fontana R J, Barrat A, et al. Prognosis of hepatocellular carcinoma: comparison of 7 staging systems in an American cohort[J]. Hepatology, 2005, 41(4): 707-715.
[9] General Office of National Health Commission. Standard for diagnosis and treatment of primary liver cancer (2022 edition)[J]. 临床肝胆病杂志, 2022, 38(2): 288-303.
[10] Marrero J A, Feng Z, Wang Y, et al. α-fetoprotein, des-γ carboxyprothrombin, and lectin-bound α-fetoprotein in early hepatocellular carcinoma[J]. Gastroenterology, 2009, 137(1): 110-118.
[11] Capurro M, Wanless I R, Sherman M, et al. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma[J]. Gastroenterology, 2003, 125(1): 89-97.
[12] Villacastin Ruiz E, Caro-Patón Gómez A, Calero Aguilar H, et al. Review of imaging techniques in the diagnosis of hepatocellular carcinoma in patients who require a liver transplant[J]. European Journal of Gastroenterology & Hepatology, 2016, 28(4): 412-420.
[13] Lin C Y, Chen J H, Liang J A, et al. 18F-FDG PET or PET/CT for detecting extrahepatic metastases or recurrent hepatocellular carcinoma: a systematic review and meta-analysis[J]. European journal of radiology, 2012, 81(9): 2417-2422.
[14] PARK JW,KIM JH,KIM SK,et al.A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma[J].J Nucl Med,2008,49(12):1912-1921.
[15] Boellaard R, O’Doherty M J, Weber W A, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0[J]. European journal of nuclear medicine and molecular imaging, 2010, 37(1): 181-200.
[16] Cong W M, Bu H, Chen J, et al. Practice guidelines for the pathological diagnosis of primary liver cancer: 2015 update[J]. World journal of gastroenterology, 2016, 22(42): 9279.
[17] Chen M S, Li J Q, Zheng Y, et al. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma[J]. Annals of surgery, 2006, 243(3): 321.
[18] Kudo M, Hasegawa K, Kawaguchi Y, et al. A multicenter randomized controlled trial to evaluate the efficacy of surgery versus radiofrequency ablation for small hepatocellular carcinoma (SURF trial): Analysis of overall survival[J]. 2021.
[19] Salem R, Gordon A C, Mouli S, et al. Y90 radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma[J]. Gastroenterology, 2016, 151(6): 1155-1163. e2.
[20] Sangro B, Bilbao J I, Boan J, et al. Radioembolization using 90Y-resin microspheres for patients with advanced hepatocellular carcinoma[J]. International Journal of Radiation Oncology Biology Physics, 2006, 66(3): 792-800.
[21] Villanueva A, Minguez B, Forner A, et al. Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy[J]. Annual review of medicine, 2010, 61: 317-328.
[22] Marrero J A, Kudo M, Venook A P, et al. Observational registry of sorafenib use in clinical practice across Child-Pugh subgroups: the GIDEON study[J]. Journal of hepatology, 2016, 65(6): 1140-1147.
[23] Llovet J M, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma[J]. New England journal of medicine, 2008, 359(4): 378-390.
[24] Cheng A L, Kang Y K, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial[J]. The lancet oncology, 2009, 10(1): 25-34.
[25] Bruix J, Qin S, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. The Lancet, 2017, 389(10064): 56-66.
[26] Finn R S, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma[J]. New England Journal of Medicine, 2020, 382(20): 1894-1905.
[27] Finn R S, Qin S, Ikeda M, et al. IMbrave150: Updated overall survival (OS) data from a global, randomized, open-label phase III study of atezolizumab (atezo)+ bevacizumab (bev) versus sorafenib (sor) in patients (pts) with unresectable hepatocellular carcinoma (HCC)[J]. 2021.
[28] Ren Z, Xu J, Bai Y, et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2–3 study[J]. The Lancet Oncology, 2021, 22(7): 977-990.
[29] Qin S, Bi F, Gu S, et al. Donafenib versus sorafenib in first-line treatment of unresectable or metastatic hepatocellular carcinoma: a randomized, open-label, parallel-controlled phase II-III trial[J]. Journal of Clinical Oncology, 2021, 39(27): 3002-3011.
[30] Kudo M, Finn R S, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial[J]. The Lancet, 2018, 391(10126): 1163-1173.
[31] Brien G L, Valerio D G, Armstrong S A. Exploiting the epigenome to control cancer-promoting gene-expression programs[J]. Cancer cell, 2016, 29(4): 464-476.
[32] Macchi F, Sadler K C. Unraveling the epigenetic basis of liver development, regeneration and disease[J]. Trends in Genetics, 2020, 36(8): 587-597.
[33] Arechederra M, Berasain C, Avila M A, et al. Chromatin dynamics during liver regeneration[C].Seminars in Cell & Developmental Biology. Academic Press, 2020, 97: 38-46.
[34] Erkekoglu P, Oral D, Chao M W, et al. Hepatocellular carcinoma and possible chemical and biological causes: a review[J]. Journal of Environmental Pathology, Toxicology and Oncology, 2017, 36(2).
[35] Wilson C L, Mann D A, Borthwick L A. Epigenetic reprogramming in liver fibrosis and cancer[J]. Advanced Drug Delivery Reviews, 2017, 121: 124-132.
[36] Chik F, Szyf M, Rabbani S A. Role of epigenetics in cancer initiation and progression[J]. Human Cell Transformation, 2011: 91-104.
[37] Gott J M, Emeson R B. Functions and mechanisms of RNA editing[J]. Annual review of genetics, 2000, 34(1): 499-531.
[38] Benne R, Van Den Burg J, Brakenhoff J P J, et al. Major transcript of the frameshifted coxll gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA[J]. Cell, 1986, 46(6): 819-826.
[39] Paz-Yaacov N, Bazak L, Buchumenski I, et al. Elevated RNA editing activity is a major contributor to transcriptomic diversity in tumors[J]. Cell reports, 2015, 13(2): 267-276.
[40] Baysal B E, Sharma S, Hashemikhabir S, et al. RNA editing in pathogenesis of cancer[J]. Cancer research, 2017, 77(14): 3733-3739.
[41] Yablonovitch A L, Deng P, Jacobson D, et al. The evolution and adaptation of A-to-I RNA editing[J]. PLoS genetics, 2017, 13(11): e1007064.
[42] Marcu-Malina V, Goldberg S, Vax E, et al. ADAR1 is vital for B cell lineage development in the mouse bone marrow[J]. Oncotarget, 2016, 7(34): 54370.
[43] Higuchi M, Maas S, Single F N, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2[J]. Nature, 2000, 406(6791): 78-81.
[44] Ekdahl Y, Farahani H S, Behm M, et al. A-to-I editing of microRNAs in the mammalian brain increases during development[J]. Genome research, 2012, 22(8): 1477-1487.
[45] Kawahara Y, Zinshteyn B, Chendrimada T P, et al. RNA editing of the microRNA‐151 precursor blocks cleavage by the Dicer–TRBP complex[J]. EMBO reports, 2007, 8(8): 763-769.
[46] Kawahara Y, Zinshteyn B, Sethupathy P, et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs[J]. Science, 2007, 315(5815): 1137-1140.
[47] Yang W, Chendrimada T P, Wang Q, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases[J]. Nature structural & molecular biology, 2006, 13(1): 13-21.
[48] Bazak L, Haviv A, Barak M, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes[J]. Genome research, 2014, 24(3): 365-376.
[49] Mannion N M, Greenwood S M, Young R, et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA[J]. Cell reports, 2014, 9(4): 1482-1494.
[50] Liddicoat B J, Piskol R, Chalk A M, et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself[J]. Science, 2015, 349(6252): 1115-1120.
[51] Mannion N M, Greenwood S M, Young R, et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA[J]. Cell reports, 2014, 9(4): 1482-1494.
[52] Pestal K, Funk C C, Snyder J M, et al. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development[J]. Immunity, 2015, 43(5): 933-944.
[53] George C X, Ramaswami G, Li J B, et al. Editing of cellular self-RNAs by adenosine deaminase ADAR1 suppresses innate immune stress responses[J]. Journal of Biological Chemistry, 2016, 291(12): 6158-6168.
[54] Nemlich Y, Greenberg E, Ortenberg R, et al. MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor growth[J]. The Journal of clinical investigation, 2013, 123(6): 2703-2718.
[55] Rice G I, Kasher P R, Forte G, et al. Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature[J]. Nature genetics, 2012, 44(11): 1243-1248.
[56] Koeris M, Funke L, Shrestha J, et al. Modulation of ADAR1 editing activity by Z-RNA in vitro[J]. Nucleic acids research, 2005, 33(16): 5362-5370.
[57] Chung H, Calis J J A, Wu X, et al. Human ADAR1 prevents endogenous RNA from triggering translational shutdown[J]. Cell, 2018, 172(4): 811-824. e14.
[58] Bajad P, Ebner F, Amman F, et al. An internal deletion of ADAR rescued by MAVS deficiency leads to a minute phenotype[J]. Nucleic acids research, 2020, 48(6): 3286-3303.
[59] Qi L, Song Y, Chan T H M, et al. An RNA editing/dsRNA binding-independent gene regulatory mechanism of ADARs and its clinical implication in cancer[J]. Nucleic acids research, 2017, 45(18): 10436-10451.
[60] Chen Y, Peng H, Zhou S, et al. ADAR1 is targeted by miR-143 to regulate IL-1β-induced endothelial activation through the NFκB pathway[J]. The International Journal of Biochemistry & Cell Biology, 2017, 89: 25-33.
[61] Gumireddy K, Li A, Kossenkov A V, et al. The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis[J]. Nature communications, 2016, 7(1): 1-9.
[62] Zhang M, Fritsche J, Roszik J, et al. RNA editing derived epitopes function as cancer antigens to elicit immune responses[J]. Nature communications, 2018, 9(1): 1-10.
[63] Chen W, He W, Cai H, et al. A-to-I RNA editing of BLCAP lost the inhibition to STAT3 activation in cervical cancer[J]. Oncotarget, 2017, 8(24): 39417.
[64] Qin Y R, Qiao J J, Chan T H M, et al. Adenosine-to-inosine RNA editing mediated by ADARs in esophageal squamous cell carcinoma[J]. Cancer research, 2014, 74(3): 840-851.
[65] Zipeto M A, Court A C, Sadarangani A, et al. ADAR1 activation drives leukemia stem cell self-renewal by impairing Let-7 biogenesis[J]. Cell stem cell, 2016, 19(2): 177-191.
[66] Chan T H M, Lin C H, Qi L, et al. A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma[J]. Gut, 2014, 63(5): 832-843.
[67] Chen L, Li Y, Lin C H, et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma[J]. Nature medicine, 2013, 19(2): 209-216.
[68] Dong X, Chen G, Cai Z, et al. CDK13 RNA over-editing mediated by ADAR1 associates with poor prognosis of hepatocellular carcinoma patients[J]. Cellular Physiology and Biochemistry, 2018, 47(6): 2602-2612.
[69] Shi L, Yan P, Liang Y, et al. Circular RNA expression is suppressed by androgen receptor (AR)-regulated adenosine deaminase that acts on RNA (ADAR1) in human hepatocellular carcinoma[J]. Cell death & disease, 2017, 8(11): e3171-e3171.
[70] Yu J, Zhang C, Yu Q, et al. ADAR1 p110 enhances adhesion of tumor cells to extracellular matrix in hepatocellular carcinoma via up-regulating ITGA2 expression[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2019, 25: 1469.
[71] Bahi-Buisson N, Cavallin M. Tubulinopathies Overview[J]. GeneReviews®[Internet], 1993.
[72] Bahi-Buisson N, Poirier K, Fourniol F, et al. The wide spectrum of tubulinopathies: what are the key features for the diagnosis?[J]. Brain, 2014, 137(6): 1676-1700.
[73] Zhu Y, Zhang X, Wang L, et al. FENDRR suppresses cervical cancer proliferation and invasion by targeting miR-15a/b-5p and regulating TUBA1A expression[J]. Cancer Cell International, 2020, 20(1): 1-10.
[74] Wang D, Jiao Z, Ji Y, et al. Elevated TUBA1A Might Indicate the Clinical Outcomes of Patients with Gastric Cancer, Being Associated with the Infiltration of Macrophages in the Tumor Immune Microenvironment[J]. Journal of Gastrointestinal & Liver Diseases, 2020, 29(4).
[75] Xie L, Huang J, Dai L, et al. Loss-of-Function Plays a Major Role in Early Neurogenesis of Tubulin α-1 A (TUBA1A) Mutation-Related Brain Malformations[J]. Molecular Neurobiology, 2021, 58(4): 1291-1302.
[76] Gadadhar S, Bodakuntla S, Natarajan K, et al. The tubulin code at a glance[J]. Journal of cell science, 2017, 130(8): 1347-1353.
[77] Crow Y J, Shetty J, Livingston J H. Treatments in Aicardi–Goutières syndrome[J]. Developmental Medicine & Child Neurology, 2020, 62(1): 42-47.
[78] Crow Y J, Rehwinkel J. Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity[J]. Human molecular genetics, 2009, 18(R2): R130-R136.
[79] Crow Y J, Manel N. Aicardi–Goutières syndrome and the type I interferonopathies[J]. Nature Reviews Immunology, 2015, 15(7): 429-440.
[80] Miyamura Y, Suzuki T, Kono M, et al. Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria[J]. The American Journal of Human Genetics, 2003, 73(3): 693-699.
[81] Livingston J H, Lin J P, Dale R C, et al. A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1[J]. Journal of medical genetics, 2014, 51(2): 76-82.
[82] Xufeng R, Nie D, Yang Q, et al. RNA editing enzyme ADAR1 is required for early T cell development[J]. Blood Science, 2019, 1(03): 196-201.
[83] Gélinas J F, Clerzius G, Shaw E, et al. Enhancement of replication of RNA viruses by ADAR1 via RNA editing and inhibition of RNA-activated protein kinase[J]. Journal of virology, 2011, 85(17): 8460-8466.
[84] Samuel C E. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral[J]. Virology, 2011, 411(2): 180-193.
[85] Pfaller C K, Radeke M J, Cattaneo R, et al. Measles virus C protein impairs production of defective copyback double-stranded viral RNA and activation of protein kinase R[J]. Journal of virology, 2014, 88(1): 456-468.
[86] Toth A M, Li Z, Cattaneo R, et al. RNA-specific adenosine deaminase ADAR1 suppresses measles virus-induced apoptosis and activation of protein kinase PKR[J]. Journal of Biological Chemistry, 2009, 284(43): 29350-29356.
[87] Cachat A, Alais S, Chevalier S A, et al. ADAR1 enhances HTLV-1 and HTLV-2 replication through inhibition of PKR activity[J]. Retrovirology, 2014, 11(1): 1-15.
[88] Nakano M, Fukami T, Gotoh S, et al. A-to-I RNA editing up-regulates human dihydrofolate reductase in breast cancer[J]. Journal of Biological Chemistry, 2017, 292(12): 4873-4884.
[89] Amin E M, Liu Y, Deng S, et al. The RNA-editing enzyme ADAR promotes lung adenocarcinoma migration and invasion by stabilizing FAK[J]. Science signaling, 2017, 10(497): eaah3941.
[90] Nemlich Y, Greenberg E, Ortenberg R, et al. MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor growth[J]. The Journal of clinical investigation, 2013, 123(6): 2703-2718.
[91] Velazquez-Torres G, Shoshan E, Ivan C, et al. A-to-I miR-378a-3p editing can prevent melanoma progression via regulation of PARVA expression[J]. Nature communications, 2018, 9(1): 1-7.
修改评论