中文版 | English
题名

ADAR1在肝癌发生发展中的功能及机制研究

其他题名
Research of function and mechanism of ADAR1 in hepatocellular carcinomadevelopment and progression
姓名
姓名拼音
YANG Hui
学号
11930123
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
李妍
导师单位
生物系
论文答辩日期
2022-05-05
论文提交日期
2022-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

肝细胞癌(Hepatocellular carcinoma,HCC,后文简称为肝癌)作为最常见的恶性肿瘤之一,致死率在中国位居第二位仅次于肺癌。目前治疗早期肝癌较好的治疗方式为外科切除,肝脏移植及消融治疗。但由于肝癌起病隐匿,早期症状不明显,病人往往在中晚期才被确诊,只能通过化疗、靶向药物等手段进行治疗。又因其化疗响应率低,高复发,易转移,故治疗效果极差,一年生存率一般不超过12%。因此,深入探讨肝癌发生发展过程中的调控机制,寻找潜在的作用靶点具有必要性及迫切性。

 ADAR1adenosine deaminase acting on RNA 1)作为腺苷脱氨酶ADAR家族成员,介导由腺嘌呤(A)至次黄嘌呤(I)的转化,可通过编辑内源性双链RNA进而抑制以MDA5为代表的干扰素通路激活。过往研究已发现,ADAR1在多种肿瘤中表达异常,然而ADAR1在肝癌中的具体功能和机制还有待进一步研究。通过对实验室拥有的临床样本以及TCGA等数据库中的临床数据进行的分析证明,ADAR1在肝癌中普遍高表达,且与病人不良预后相关。随后,体外模型实验证明ADAR1的敲低或敲除能降低肝癌细胞的生长与侵袭能力。基于过往研究中报道ADAR1功能与MDA5干扰素通路密切相关,本文构建了同时敲除ADAR1MDA5的肝癌细胞系,结果显示ADAR1对生长的调控依赖MDA5干扰素通路,而ADAR1对细胞侵袭的调控具有独立于MDA5干扰素通路以外的功能和机制。为了进一步研究其调控机制,本文通过交叉对比ADAR1-p110过表达小鼠与肝癌细胞系的RNA-seq结果,从中筛选到TUBA1A基因(Tubulin α-1 A)。在数据库、临床样本及细胞系的验证中,TUBA1A的表达量在肝癌中普遍上调,与病人不良预后相关,并与ADAR1的表达量呈正相关性。在肝癌细胞系中,TUBA1A的敲低能降低细胞的生长与侵袭能力。综上所述,本文检测发现ADAR1在肝癌中普遍高表达,且与病人不良预后相关,ADAR1能够调控肝癌细胞的生长与侵袭,生长方面的功能依赖于MDA5通路,侵袭方面具有独立于MDA5通路的作用机制,且有可能通过调控TUBA1A表达来发挥作用。上述结果为靶向ADAR1治疗肝癌提供了可能的分子机制及理论依据。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] Chen W, Zheng R, Baade PD, et al.Cancer statistics in China, 2015. CA: a cancer journal for clinicians. 2016; 66: 115-32.
[2] WEIDERPASS E, STEWART B W. World Cancer Report[J].2020
[3] Bosch F X, Ribes J, Díaz M, et al. Primary liver cancer: worldwide incidence and trends[J]. Gastroenterology, 2004, 127(5): S5-S16.
[4] Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. International journal of cancer, 2015, 136(5): E359-E386.
[5] Bruix J, Sherman M. Management of hepatocellular carcinoma: an update[J]. Hepatology (Baltimore, Md.), 2011, 53(3): 1020.
[6] White D L, Kanwal F, El–Serag H B. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review[J]. Clinical gastroenterology and hepatology, 2012, 10(12): 1342-1359. e2.
[7] Schiff's diseases of the liver[M]. John Wiley & Sons, 2017.
[8] Marrero J A, Fontana R J, Barrat A, et al. Prognosis of hepatocellular carcinoma: comparison of 7 staging systems in an American cohort[J]. Hepatology, 2005, 41(4): 707-715.
[9] General Office of National Health Commission. Standard for diagnosis and treatment of primary liver cancer (2022 edition)[J]. 临床肝胆病杂志, 2022, 38(2): 288-303.
[10] Marrero J A, Feng Z, Wang Y, et al. α-fetoprotein, des-γ carboxyprothrombin, and lectin-bound α-fetoprotein in early hepatocellular carcinoma[J]. Gastroenterology, 2009, 137(1): 110-118.
[11] Capurro M, Wanless I R, Sherman M, et al. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma[J]. Gastroenterology, 2003, 125(1): 89-97.
[12] Villacastin Ruiz E, Caro-Patón Gómez A, Calero Aguilar H, et al. Review of imaging techniques in the diagnosis of hepatocellular carcinoma in patients who require a liver transplant[J]. European Journal of Gastroenterology & Hepatology, 2016, 28(4): 412-420.
[13] Lin C Y, Chen J H, Liang J A, et al. 18F-FDG PET or PET/CT for detecting extrahepatic metastases or recurrent hepatocellular carcinoma: a systematic review and meta-analysis[J]. European journal of radiology, 2012, 81(9): 2417-2422.
[14] PARK JW,KIM JH,KIM SK,et al.A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma[J].J Nucl Med,2008,49(12):1912-1921.
[15] Boellaard R, O’Doherty M J, Weber W A, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0[J]. European journal of nuclear medicine and molecular imaging, 2010, 37(1): 181-200.
[16] Cong W M, Bu H, Chen J, et al. Practice guidelines for the pathological diagnosis of primary liver cancer: 2015 update[J]. World journal of gastroenterology, 2016, 22(42): 9279.
[17] Chen M S, Li J Q, Zheng Y, et al. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma[J]. Annals of surgery, 2006, 243(3): 321.
[18] Kudo M, Hasegawa K, Kawaguchi Y, et al. A multicenter randomized controlled trial to evaluate the efficacy of surgery versus radiofrequency ablation for small hepatocellular carcinoma (SURF trial): Analysis of overall survival[J]. 2021.
[19] Salem R, Gordon A C, Mouli S, et al. Y90 radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma[J]. Gastroenterology, 2016, 151(6): 1155-1163. e2.
[20] Sangro B, Bilbao J I, Boan J, et al. Radioembolization using 90Y-resin microspheres for patients with advanced hepatocellular carcinoma[J]. International Journal of Radiation Oncology Biology Physics, 2006, 66(3): 792-800.
[21] Villanueva A, Minguez B, Forner A, et al. Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy[J]. Annual review of medicine, 2010, 61: 317-328.
[22] Marrero J A, Kudo M, Venook A P, et al. Observational registry of sorafenib use in clinical practice across Child-Pugh subgroups: the GIDEON study[J]. Journal of hepatology, 2016, 65(6): 1140-1147.
[23] Llovet J M, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma[J]. New England journal of medicine, 2008, 359(4): 378-390.
[24] Cheng A L, Kang Y K, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial[J]. The lancet oncology, 2009, 10(1): 25-34.
[25] Bruix J, Qin S, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. The Lancet, 2017, 389(10064): 56-66.
[26] Finn R S, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma[J]. New England Journal of Medicine, 2020, 382(20): 1894-1905.
[27] Finn R S, Qin S, Ikeda M, et al. IMbrave150: Updated overall survival (OS) data from a global, randomized, open-label phase III study of atezolizumab (atezo)+ bevacizumab (bev) versus sorafenib (sor) in patients (pts) with unresectable hepatocellular carcinoma (HCC)[J]. 2021.
[28] Ren Z, Xu J, Bai Y, et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2–3 study[J]. The Lancet Oncology, 2021, 22(7): 977-990.
[29] Qin S, Bi F, Gu S, et al. Donafenib versus sorafenib in first-line treatment of unresectable or metastatic hepatocellular carcinoma: a randomized, open-label, parallel-controlled phase II-III trial[J]. Journal of Clinical Oncology, 2021, 39(27): 3002-3011.
[30] Kudo M, Finn R S, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial[J]. The Lancet, 2018, 391(10126): 1163-1173.
[31] Brien G L, Valerio D G, Armstrong S A. Exploiting the epigenome to control cancer-promoting gene-expression programs[J]. Cancer cell, 2016, 29(4): 464-476.
[32] Macchi F, Sadler K C. Unraveling the epigenetic basis of liver development, regeneration and disease[J]. Trends in Genetics, 2020, 36(8): 587-597.
[33] Arechederra M, Berasain C, Avila M A, et al. Chromatin dynamics during liver regeneration[C].Seminars in Cell & Developmental Biology. Academic Press, 2020, 97: 38-46.
[34] Erkekoglu P, Oral D, Chao M W, et al. Hepatocellular carcinoma and possible chemical and biological causes: a review[J]. Journal of Environmental Pathology, Toxicology and Oncology, 2017, 36(2).
[35] Wilson C L, Mann D A, Borthwick L A. Epigenetic reprogramming in liver fibrosis and cancer[J]. Advanced Drug Delivery Reviews, 2017, 121: 124-132.
[36] Chik F, Szyf M, Rabbani S A. Role of epigenetics in cancer initiation and progression[J]. Human Cell Transformation, 2011: 91-104.
[37] Gott J M, Emeson R B. Functions and mechanisms of RNA editing[J]. Annual review of genetics, 2000, 34(1): 499-531.
[38] Benne R, Van Den Burg J, Brakenhoff J P J, et al. Major transcript of the frameshifted coxll gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA[J]. Cell, 1986, 46(6): 819-826.
[39] Paz-Yaacov N, Bazak L, Buchumenski I, et al. Elevated RNA editing activity is a major contributor to transcriptomic diversity in tumors[J]. Cell reports, 2015, 13(2): 267-276.
[40] Baysal B E, Sharma S, Hashemikhabir S, et al. RNA editing in pathogenesis of cancer[J]. Cancer research, 2017, 77(14): 3733-3739.
[41] Yablonovitch A L, Deng P, Jacobson D, et al. The evolution and adaptation of A-to-I RNA editing[J]. PLoS genetics, 2017, 13(11): e1007064.
[42] Marcu-Malina V, Goldberg S, Vax E, et al. ADAR1 is vital for B cell lineage development in the mouse bone marrow[J]. Oncotarget, 2016, 7(34): 54370.
[43] Higuchi M, Maas S, Single F N, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2[J]. Nature, 2000, 406(6791): 78-81.
[44] Ekdahl Y, Farahani H S, Behm M, et al. A-to-I editing of microRNAs in the mammalian brain increases during development[J]. Genome research, 2012, 22(8): 1477-1487.
[45] Kawahara Y, Zinshteyn B, Chendrimada T P, et al. RNA editing of the microRNA‐151 precursor blocks cleavage by the Dicer–TRBP complex[J]. EMBO reports, 2007, 8(8): 763-769.
[46] Kawahara Y, Zinshteyn B, Sethupathy P, et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs[J]. Science, 2007, 315(5815): 1137-1140.
[47] Yang W, Chendrimada T P, Wang Q, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases[J]. Nature structural & molecular biology, 2006, 13(1): 13-21.
[48] Bazak L, Haviv A, Barak M, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes[J]. Genome research, 2014, 24(3): 365-376.
[49] Mannion N M, Greenwood S M, Young R, et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA[J]. Cell reports, 2014, 9(4): 1482-1494.
[50] Liddicoat B J, Piskol R, Chalk A M, et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself[J]. Science, 2015, 349(6252): 1115-1120.
[51] Mannion N M, Greenwood S M, Young R, et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA[J]. Cell reports, 2014, 9(4): 1482-1494.
[52] Pestal K, Funk C C, Snyder J M, et al. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development[J]. Immunity, 2015, 43(5): 933-944.
[53] George C X, Ramaswami G, Li J B, et al. Editing of cellular self-RNAs by adenosine deaminase ADAR1 suppresses innate immune stress responses[J]. Journal of Biological Chemistry, 2016, 291(12): 6158-6168.
[54] Nemlich Y, Greenberg E, Ortenberg R, et al. MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor growth[J]. The Journal of clinical investigation, 2013, 123(6): 2703-2718.
[55] Rice G I, Kasher P R, Forte G, et al. Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature[J]. Nature genetics, 2012, 44(11): 1243-1248.
[56] Koeris M, Funke L, Shrestha J, et al. Modulation of ADAR1 editing activity by Z-RNA in vitro[J]. Nucleic acids research, 2005, 33(16): 5362-5370.
[57] Chung H, Calis J J A, Wu X, et al. Human ADAR1 prevents endogenous RNA from triggering translational shutdown[J]. Cell, 2018, 172(4): 811-824. e14.
[58] Bajad P, Ebner F, Amman F, et al. An internal deletion of ADAR rescued by MAVS deficiency leads to a minute phenotype[J]. Nucleic acids research, 2020, 48(6): 3286-3303.
[59] Qi L, Song Y, Chan T H M, et al. An RNA editing/dsRNA binding-independent gene regulatory mechanism of ADARs and its clinical implication in cancer[J]. Nucleic acids research, 2017, 45(18): 10436-10451.
[60] Chen Y, Peng H, Zhou S, et al. ADAR1 is targeted by miR-143 to regulate IL-1β-induced endothelial activation through the NFκB pathway[J]. The International Journal of Biochemistry & Cell Biology, 2017, 89: 25-33.
[61] Gumireddy K, Li A, Kossenkov A V, et al. The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis[J]. Nature communications, 2016, 7(1): 1-9.
[62] Zhang M, Fritsche J, Roszik J, et al. RNA editing derived epitopes function as cancer antigens to elicit immune responses[J]. Nature communications, 2018, 9(1): 1-10.
[63] Chen W, He W, Cai H, et al. A-to-I RNA editing of BLCAP lost the inhibition to STAT3 activation in cervical cancer[J]. Oncotarget, 2017, 8(24): 39417.
[64] Qin Y R, Qiao J J, Chan T H M, et al. Adenosine-to-inosine RNA editing mediated by ADARs in esophageal squamous cell carcinoma[J]. Cancer research, 2014, 74(3): 840-851.
[65] Zipeto M A, Court A C, Sadarangani A, et al. ADAR1 activation drives leukemia stem cell self-renewal by impairing Let-7 biogenesis[J]. Cell stem cell, 2016, 19(2): 177-191.
[66] Chan T H M, Lin C H, Qi L, et al. A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma[J]. Gut, 2014, 63(5): 832-843.
[67] Chen L, Li Y, Lin C H, et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma[J]. Nature medicine, 2013, 19(2): 209-216.
[68] Dong X, Chen G, Cai Z, et al. CDK13 RNA over-editing mediated by ADAR1 associates with poor prognosis of hepatocellular carcinoma patients[J]. Cellular Physiology and Biochemistry, 2018, 47(6): 2602-2612.
[69] Shi L, Yan P, Liang Y, et al. Circular RNA expression is suppressed by androgen receptor (AR)-regulated adenosine deaminase that acts on RNA (ADAR1) in human hepatocellular carcinoma[J]. Cell death & disease, 2017, 8(11): e3171-e3171.
[70] Yu J, Zhang C, Yu Q, et al. ADAR1 p110 enhances adhesion of tumor cells to extracellular matrix in hepatocellular carcinoma via up-regulating ITGA2 expression[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2019, 25: 1469.
[71] Bahi-Buisson N, Cavallin M. Tubulinopathies Overview[J]. GeneReviews®[Internet], 1993.
[72] Bahi-Buisson N, Poirier K, Fourniol F, et al. The wide spectrum of tubulinopathies: what are the key features for the diagnosis?[J]. Brain, 2014, 137(6): 1676-1700.
[73] Zhu Y, Zhang X, Wang L, et al. FENDRR suppresses cervical cancer proliferation and invasion by targeting miR-15a/b-5p and regulating TUBA1A expression[J]. Cancer Cell International, 2020, 20(1): 1-10.
[74] Wang D, Jiao Z, Ji Y, et al. Elevated TUBA1A Might Indicate the Clinical Outcomes of Patients with Gastric Cancer, Being Associated with the Infiltration of Macrophages in the Tumor Immune Microenvironment[J]. Journal of Gastrointestinal & Liver Diseases, 2020, 29(4).
[75] Xie L, Huang J, Dai L, et al. Loss-of-Function Plays a Major Role in Early Neurogenesis of Tubulin α-1 A (TUBA1A) Mutation-Related Brain Malformations[J]. Molecular Neurobiology, 2021, 58(4): 1291-1302.
[76] Gadadhar S, Bodakuntla S, Natarajan K, et al. The tubulin code at a glance[J]. Journal of cell science, 2017, 130(8): 1347-1353.
[77] Crow Y J, Shetty J, Livingston J H. Treatments in Aicardi–Goutières syndrome[J]. Developmental Medicine & Child Neurology, 2020, 62(1): 42-47.
[78] Crow Y J, Rehwinkel J. Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity[J]. Human molecular genetics, 2009, 18(R2): R130-R136.
[79] Crow Y J, Manel N. Aicardi–Goutières syndrome and the type I interferonopathies[J]. Nature Reviews Immunology, 2015, 15(7): 429-440.
[80] Miyamura Y, Suzuki T, Kono M, et al. Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria[J]. The American Journal of Human Genetics, 2003, 73(3): 693-699.
[81] Livingston J H, Lin J P, Dale R C, et al. A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1[J]. Journal of medical genetics, 2014, 51(2): 76-82.
[82] Xufeng R, Nie D, Yang Q, et al. RNA editing enzyme ADAR1 is required for early T cell development[J]. Blood Science, 2019, 1(03): 196-201.
[83] Gélinas J F, Clerzius G, Shaw E, et al. Enhancement of replication of RNA viruses by ADAR1 via RNA editing and inhibition of RNA-activated protein kinase[J]. Journal of virology, 2011, 85(17): 8460-8466.
[84] Samuel C E. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral[J]. Virology, 2011, 411(2): 180-193.
[85] Pfaller C K, Radeke M J, Cattaneo R, et al. Measles virus C protein impairs production of defective copyback double-stranded viral RNA and activation of protein kinase R[J]. Journal of virology, 2014, 88(1): 456-468.
[86] Toth A M, Li Z, Cattaneo R, et al. RNA-specific adenosine deaminase ADAR1 suppresses measles virus-induced apoptosis and activation of protein kinase PKR[J]. Journal of Biological Chemistry, 2009, 284(43): 29350-29356.
[87] Cachat A, Alais S, Chevalier S A, et al. ADAR1 enhances HTLV-1 and HTLV-2 replication through inhibition of PKR activity[J]. Retrovirology, 2014, 11(1): 1-15.
[88] Nakano M, Fukami T, Gotoh S, et al. A-to-I RNA editing up-regulates human dihydrofolate reductase in breast cancer[J]. Journal of Biological Chemistry, 2017, 292(12): 4873-4884.
[89] Amin E M, Liu Y, Deng S, et al. The RNA-editing enzyme ADAR promotes lung adenocarcinoma migration and invasion by stabilizing FAK[J]. Science signaling, 2017, 10(497): eaah3941.
[90] Nemlich Y, Greenberg E, Ortenberg R, et al. MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor growth[J]. The Journal of clinical investigation, 2013, 123(6): 2703-2718.
[91] Velazquez-Torres G, Shoshan E, Ivan C, et al. A-to-I miR-378a-3p editing can prevent melanoma progression via regulation of PARVA expression[J]. Nature communications, 2018, 9(1): 1-7.

所在学位评定分委会
生物系
国内图书分类号
Q291
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336014
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
杨晖. ADAR1在肝癌发生发展中的功能及机制研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930123-杨晖-生物系.pdf(6472KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[杨晖]的文章
百度学术
百度学术中相似的文章
[杨晖]的文章
必应学术
必应学术中相似的文章
[杨晖]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。