中文版 | English
题名

生态补水提升城市水环境韧性的潜力研究:以龙岗河流域为例

其他题名
POTENTIAL OF ECOLOGICAL WATER REPLENISHMENT TO ENHANCE RESILIENCE OF URBAN WATER ENVIRONMENT——A CASE STUDY IN LONGGANG RIVER BASIN
姓名
姓名拼音
WU Qingping
学号
11930623
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
郑一
导师单位
环境科学与工程学院
论文答辩日期
2022-05-13
论文提交日期
2022-06-18
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着我国经济高速增长和人口急剧膨胀,快速的城市化进程和滞后的污水处理设施建设之间的矛盾使得城市水环境日益恶化。在城市排水系统建设不完善且缺少外源补水的情况下,雨源型河流在旱季的水污染风险大大增加。以再生水、水库水等为水源对河道进行生态补水是保障河道基流、提高水环境容量、改善水质的潜在手段。有韧性(resilience)的水系统是韧性城市的关键特征之一,但目前还缺乏关于生态补水如何提升城市河道水环境韧性的定量研究。从韧性的角度出发,通过再生水与水库水等多水源联合优化配置,对雨源型河道进行常态化补水,对于降低河道旱季水污染风险、巩固城市治水提质成效、推进韧性城市建设具有重要意义。

本论文以深圳市第二大流域——龙岗河流域为研究对象,利用MIKE 11软件构建了一维水动力-水质耦合模型,模拟溶解氧(Dissolved oxygenDO)、化学需氧量(Chemical oxygen demandCOD)、氨氮(NH3-N)、总磷(Total phosphorusTP等水质参数。选用实测流速与水质数据对模型进行率定与验证,四联河、大康河、黄沙河、同乐河、丁山河共五条支流的流速相对误差-32% ~ -11%之间,均方误差在0.05 ~ 0.13 mg2/L2之间;五条支流水质的相对误差在-25% ~ 25%之间,除同乐河的NH3-N外,其余支流水质参数的纳什系数在0.35 ~ 0.73之间。可见,模型可以较为准确地模拟河道低流量情形及水质变化趋势,为龙岗河流域水环境韧性的定量评估提供了关键技术支撑。

设置基线(不补水)、提标前再生水补水、提标后再生水补水、新增再生水补水四种情景,基于MIKE 11模拟和可靠性-韧性-脆弱性的指标体系,定量评估了再生水补水对旱季河流水环境韧性的提升效应。结果表明,提标前的再生水补水对河流韧性的提升效应在0% ~ 11%之间;提标改造对韧性的提升效应微乎其微;新增36万立方米/的再生水补水可以消除黑臭水体,各河流韧性的提升程度均超80%;仅依靠新增再生水补水无法使河流水质满足地表水V类标准,总体水量缺口巨大,NH3-NTP分别为污染程度较轻和较严重的子流域的限制性指标。

2018年再生水补水的基础上,将新增再生水补水和污染物削减(即提高支流管网污水收集率)两类变化条件进行组合,以成本最小化和支流韧性提升最大化为优化目标,以支流新增再生水补水量为决策变量,利用带精英策略的非支配排序遗传算法(Non-dominated sorting genetic algorithms Ⅱ)对再生水补水进行优化配置,并使用基于熵权法的优劣解距离法(Technique for order preference by similarity to ideal solutionTOPSIS对非支配解集进行排序选择,得到了贴近度最大的最优方案:污水收集率提升20%,再生水补水量为10万立方米/

进一步设置基线(不补水)、现状再生水补水(2018年)、水库水均匀补水、水库水日优化调度四种情景,以旱季污染最为严重的一个月为情景评价期,定量评估了水库水补水对旱季河流水环境韧性的提升效应。结果表明,水库水的均匀补给对于污染程度较轻的河流韧性提升效应较为显著(50%),而水库水的优化调度可以进一步提升水环境韧性。水库水补水对CODNH3-N的韧性提升效应高于TP论文研究结果为粤港澳大湾区的水污染治理和韧性城市建设提供了科学依据。

其他摘要

Increasing population and rapid urbanization accelerated the exploitation of limited water resources and contributed to China’s water quality deterioration. With the lagging sewage treatment facilities’ constructions and the lack of external water recharge, the risk of water pollution for rain-source rivers with small environmental capacity and weak self-cleaning ability has greatly increased during dry seasons. Ecological water replenishment with the combination of reclaimed water and reservoir water plays a significant role in increasing water environmental capacity and preserving water environment. The impacts of ecological replenishment on urban water environment have been widely studied, while fewer studies have quantitatively assessed its impact from the perspective of resilience. Consequently, the research on potential of water ecological replenishment to enhance urban water environmental resilience is of great importance to the prevention and control of water pollution and building of resilient cities.

Using Longgang River basin as an example, this study developed an integrated hydrodynamic and water quality model using MIKE 11 and simulated four parameters, including dissolved oxygen (DO), chemical oxygen demand (COD), ammonia and total phosphorus (TP). The performance of MIKE 11 model was calibrated (October 2017 to April 2018) and validated (October 2018 to April 2019) based on weekly measured velocity and water quality data at six monitoring sites of tributaries. The results show that the relative error of velocity were between -32% and -11%, mean square error were between 0.05 and 0.13 mg2/L2; Nash-Sutcliffe efficiency coefficient of water quality model were between 0.25 ~ 0.73. The MIKE 11 model accurately simulated discharge and the changes of water quality of tributaries in critical conditions and provided a quantitative assessment tool of the Longgang River basin water environmental resilience.

Based on the MIKE 11 model, this study quantitatively assessed the impacts of reclaimed water utilization on urban water environmental resilience using reliability-resilience-vulnerability metrics through a series of different scenarios (no water recharge, currently reclaimed water recharge, adding reclaimed water recharge). The results show that the effect of reclaimed water replenishment on resilience are 0% ~ 11%; the improved effect of upgrading effluent standard on resilience is minimal; the additional 360,000 m3/d of reclaimed water replenishment could eliminate black odor water bodies, and the improvement of river resilience is more than 80%; relying on reclaimed water replenishment cannot meet surface water quasi V, the overall water shortage is about 3 million m3/d, Dingshan River is the main restricted river, NH3-N and TP are the restricted indicators for less polluted and heavily polluted sub-basins respectively.

In addition, the allocation of reclaimed water was optimized using non-dominated sorting genetic algorithms Ⅱ (NSGA Ⅱ). This study minimized cost and maximized enhancement of tributaries’ resilience, which were denoted by optimization objective functions, subject to constraints of maximum discharge and ecological environment water demand. Discharge was selected as decision variables. The entropy-weighted technique for order preference by similarity to ideal solution method (TOPSIS) was used to selected pareto solution sets. The optimal solution with the greatest closeness was the combination of 20% increase in wastewater collection rate and 100,000 m3/d of reclaimed water replenishment.

This study quantitatively assessed the impacts of reservoir water utilization on urban water environmental resilience using reliability-resilience-vulnerability metrics through a series of different scenarios (no water recharge, currently reclaimed water recharge, even replenishment and optimal daily scheduling of reservoir water). The results show that the evenly recharge of reservoir water has a significant effect (greater than 50%) on improving the resilience of lightly polluted rivers, and the optimal scheduling of reservoir water can further improve water environmental resilience. The resilience enhancement effect of reservoir water replenishment on COD and NH3-N are higher than that of TP. The results of this study provide important enlightenment for the prevention of water pollution and resilient city construction in the Guangdong-Hong Kong-Macao Greater Bay Area.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] ACUTO M, PARNELL S, SETO K C. Building a global urban science[J]. Nat Sustain, 2018,1(1): 2-4.
[2] 中华人民共和国国家统计局. 中华人民共和国2019年国民经济和社会发展统计公报[R/OL]. (2020-02-28)
[2022-04-21]. http://www.stats.gov.cn/tjsj/zxfb/202002/t20200228_1728913.html.
[3] STROKAL M, BAI Z, FRANSSEN W, et al. Urbanization: an increasing source of multiple pollutants to rivers in the 21st century[J]. npj Urban Sustain, 2021,1(1): 24.
[4] MA T, SUN S, FU G, et al. Pollution exacerbates China’s water scarcity and its regional inequality[J]. Nat Commun, 2020,11(1): 650.
[5] 中华人民共和国国务院. 国务院关于印发水污染防治行动计划的通知[EB/OL]. (2015-03-24)
[2022-04-21]. https://www.mee.gov.cn/zcwj/gwywj/201811/t20181129_676575.shtml.
[6] CHEN G, LUO J, ZHANG C, et al. Characteristics and influencing factors of spatial differentiation of urban black and odorous waters in China[J]. Sustainability-Basel, 2018,10: 4747.
[7] 徐祖信, 徐晋, 金伟, 等. 我国城市黑臭水体治理面临的挑战与机遇[J]. 给水排水, 2019,55(03): 1-5.
[8] 毕业亮, 王华彩, 夏兵, 等. 雨源型城市河流水污染特征及水质联合评价: 以深圳龙岗河为例[J]. 环境科学, 2022,43(02): 782-794.
[9] 王谦, 王秋茹, 王秀蘅, 等. 城市雨源型河流生态补水治理案例研究[J]. 给水排水, 2017,53(10): 47-53.
[10] CHEN C, WANG S, KIM H, et al. Non-conventional water reuse in agriculture: A circular water economy[J]. Water Res, 2021,199: 117193.
[11] 中华人民共和国住房和城乡建设部. 中国城乡建设统计年鉴[M]. 北京: 中国统计出版社, 2020: 56-59.
[12] 商放泽, 黄跃飞, 孙小玲, 等. 深圳市现状及未来水污染防治效果评价[J]. 环境科学与技术, 2019,42(S2): 132-139.
[13] 深圳市水务局. 深圳市治水提质工作计划(2015—2020年) [R/OL]. (2016-01-28)
[2022-04-21]. http://swj.sz.gov.cn/ztzl/ndmsss/yldzl/xgzc/201612/P020161207365500206778.pdf.
[14] LIU L, MA X. Integrated river basin management in rapidly urbanizing areas: a case of Shenzhen, China[J]. Front Environ Sci Engin China, 2011,5(2): 243-254.
[15] 深圳市水务局. 2020年深圳市水资源公报[R/OL]. (2021-09-08)
[2022-04-21]. http://swj.sz.gov.cn/attachment/0/849/849246/9113900.pdf.
[16] HUANG C, ZHANG J, HU G, et al. Characterization of the distribution, source, and potential ecological risk of perfluorinated alkyl substances (PFASs) in the inland river basin of Longgang District, South China[J]. Environ Pollut, 2021,287: 117642.
[17] GAO C, GAO C, SONG K, et al. Regional water ecosystem risk assessment based on GIS and pollutant diffusion model: A case study of Shenzhen eco-industrial park[J]. Process Saf Environ, 2019,130: 182-189.
[18] ZHUANG W. Eco-environmental impact of inter-basin water transfer projects: a review[J]. Environ Sci Pollut R, 2016,23(13): 12867-12879.
[19] SHUMILOVA O, TOCKNER K, THIEME M, et al. Global water transfer megaprojects: a potential solution for the water-food-energy nexus?[J]. Front Environ Sci, 2018,6.
[20] LIN M, LEK S, REN P, et al. Predicting impacts of south-to-north water transfer project on fish assemblages in Hongze Lake, China[J]. J Appl Ichthyol, 2017,33.
[21] ASANO T, LEVINE A D. Wastewater reclamation, recycling and reuse: past, present, and future[J]. Water Sci Technol, 1996,33(10): 1-14.
[22] NAS B, UYANIK S, AYGÜN A, et al. Wastewater reuse in Turkey: from present status to future potential[J]. Water Sci Technol Water Supply, 2019,20(1): 73-82.
[23] CHEN Z, NGO H H, GUO W. A critical review on the end uses of recycled water[J]. Crit Rev Env Sci Tec, 2013,43(14): 1446-1516.
[24] FAN Y, CHEN W, JIAO W, et al. Cost-benefit analysis of reclaimed wastewater reuses in Beijing[J]. Desalin Water Treat, 2015,53(5): 1224-1233.
[25] 中华人民共和国住房和城乡建设部. 中国城乡建设统计年鉴[M].北京: 中国统计出版社, 2019: 56-59.
[26] GU Q, CHEN Y, PODY R, et al. Public perception and acceptability toward reclaimed water in Tianjin[J]. Resour Conserv Recycl, 2015,104: 291-299.
[27] 王子钊, 王卓, 陶益, 等. 再生水用于深圳河流补水效果的研究[J]. 水利水电技术, 2015,46(02): 34-38.
[28] 胡爱兵, 杨少平, 任心欣. 深圳市再生水工作回顾与展望[J]. 中国给水排水, 2021,37(08): 18-23.
[29] 马涛, 刘九夫, 彭安帮, 等. 中国非常规水资源开发利用进展[J]. 水科学进展, 2020,31(06): 960-969.
[30] 郭兴芳. 污水再生景观环境利用政策标准发展历程[EB/OL]. (2020-6-12)
[2022-04-21]. https://huanbao.bjx.com.cn/news/20200612/1080741.shtml.
[31] YU Y, MA M, ZHENG F, et al. Spatio-temporal variation and controlling factors of water quality in Yongding River replenished by reclaimed water in Beijing, North China[J]. Water-Sui, 2017,9: 453.
[32] XIE E, ZHAO X, LI K, et al. Microbial community structure in the river sediments from upstream of Guanting Reservoir: potential impacts of reclaimed water recharge[J]. Sci Total Environ, 2021,766: 142609.
[33] ZHU L, CHEN Y, WANG Y, et al. Ecological assessment of water quality in an urban river replenished with reclaimed water: the phytoplankton functional groups approach[J]. Environ Res, 2021,3(11): 115006.
[34] SANCHÍS SANDOVAL J, PETROVIĆ M, FARRÉ M. Emission of (chlorinated) reclaimed water into a Mediterranean River and its related effects to the dissolved organic matter fingerprint[J]. Sci Total Environ, 2020,760: 143881.
[35] MENG J, ZHOU Y, LIU S, et al. Increasing perfluoroalkyl substances and ecological process from the Yongding Watershed to the Guanting Reservoir in the Olympic host cities, China[J]. Environ Int, 2019,133: 105224.
[36] 王永刚, 王旭, 孙长虹, 等. 再生水补给型城市河流水质改善效果模拟[J]. 环境科学与技术, 2017,40(06): 54-60.
[37] 卿晓霞, 张会波, 周健, 等. 伏牛溪水污染治理效果的数值模拟研究[J]. 环境工程学报, 2015,9(01): 65-72.
[38] 田凯达, 刘晓薇, 王慧, 等. MIKE11模型在合肥市十五里河水质改善研究中的应用[J]. 水文, 2019,39(04): 18-23.
[39] 周文琦, 俞芳琴, 韩璐遥, 等. 生态补水对城南河水质水量改善效果研究[J]. 南水北调与水利科技, 2020,18(03): 151-157.
[40] 熊鸿斌, 陈雪, 张斯思. 基于MIKE11模型提高污染河流水质改善效果的方法[J]. 环境科学, 2017,38(12): 5063-5073.
[41] AO D, LUO L, DZAKPASU M, et al. Replenishment of landscape water with reclaimed water: Optimization of supply scheme using transparency as an indicator[J]. Ecol Indic, 2018,88: 503-511.
[42] CHHIPI-SHRESTHA G, RODRIGUEZ M, SADIQ R. Selection of sustainable municipal water reuse applications by multi-stakeholders using game theory[J]. Sci Total Environ, 2019,650: 2512-2526.
[43] 刘阳. 城市河流水文情势分析及生态调度研究[D]. 济南: 山东大学, 2020: 7-9.
[44] SUN K, HU L, GUO J, et al. Enhancing the understanding of hydrological responses induced by ecological water replenishment using improved machine learning models: A case study in Yongding River[J]. Sci Total Environ, 2021,768: 145489.
[45] 北京水务. 北京市水资源调度(2021汛后-2022汛前)[EB/OL]. (2022-03-20)
[2022-04-21]. http://nsbd.swj.beijing.gov.cn:8088/uacp_whole_basin/pageview/bjsw/main.
[46] 邹江. 九洲江重要的生态补水系统即将试运行[EB/OL]. (2021-12-05)
[2022-04-21]. https://www.gxylnews.com/html/news/2021/12/226717.html.
[47] EPA. Frequently asked questions on removal of obsolete dams[EB/OL]. (2016-12-15)
[2022-04-21]. https://www.epa.gov/sites/default/files/2016- 12/documents/2016_december_2_clean_final_dam_removal_faqs_0.pdf.
[48] SCHIERMEIER Q. Europe is demolishing its dams to restore ecosystems[J]. Nature, 2018,557(7706): 290-292.
[49] 彭溢, 廖国威, 谢林伸, 等. 深圳市利用小(2)型水库进行河流生态补水研究[J]. 环境工程, 2016,34(02): 51-53.
[50] ACREMAN M C, DUNBAR M J. Defining environmental river flow requirements - a review[J]. Hydrol Earth Syst Sc, 2004,8: 861-876.
[51] HARMAN C, STEWARDSON M. Optimizing dam release rules to meet environmental flow targets[J]. River Res Appl, 2005,21(2-3): 113-129.
[52] YAN Z, ZHOU Z, SANG X, et al. Water replenishment for ecological flow with an improved water resources allocation model[J]. Sci Total Environ, 2018,643: 1152-1165.
[53] TSAI W, CHANG F, CHANG L, et al. AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands[J]. J Hydrol, 2015,530: 634-644.
[54] CHEN M H. Water Regulation and Water Resources Management Selections for North China: using Beiyun River Basin as an Example[Z]. 5th International Yellow River Forum on Ensuring Water Right of the River's Demand and Healthy River Basin maintenance: 2015, 182-192.
[55] HOLLING C S. Resilience and stability of ecological systems[J]. Annu Rev Ecol Evol S, 1973,4: 1-23.
[56] NGUYEN T, CAI X, OUYANG Y, et al. Modelling infrastructure interdependencies, resiliency and sustainability[J]. Int J Control, 2016,12: 4.
[57] LU H, KANG Y, LIU L, et al. Comprehensive groundwater safety assessment under potential shale gas contamination based on integrated analysis of reliability–resilience–vulnerability and gas migration index[J]. J Hydrol, 2019,578: 124072.
[58] FRANCIS R, BEKERA B. A metric and frameworks for resilience analysis of engineered and infrastructure systems[J]. Reliab Eng Syst Safe, 2014,121: 90-103.
[59] CAI B, XIE M, LIU Y, et al. Availability-based engineering resilience metric and its corresponding evaluation methodology[J]. Reliab Eng Syst Safe, 2018,172: 216-224.
[60] ALBERTI M, MARZLUFF J. Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions[J]. Urban Ecosyst, 2004,7: 241-265.
[61] WALKER B, HOLLIN C S, CARPENTER S R, et al. Resilience, adaptability and transformability in social-ecological systems[J]. Ecol Soc, 2004,9(2).
[62] SCHOON M, Van der LEEUW S. The shift toward social-ecological systems perspectives: insights into the human-nature relationship[J]. Natures Sciences Sociétés, 2015,23: 166-174.
[63] HASHIMOTO T, STEDINGER J R, LOUCKS D P. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation[J]. Water Resour Res, 1982,18(1): 14-20.
[64] ASEFA T, CLAYTON J, ADAMS A, et al. Performance evaluation of a water resources system under varying climatic conditions: reliability, resilience, vulnerability and beyond[J]. J Hydrol, 2014,508: 53-65.
[65] MALLYA G, GUPTA A, HANTUSH M M, et al. Uncertainty quantification in reconstruction of sparse water quality time series: Implications for watershed health and risk-based TMDL assessment[J]. Environ Modell Softw, 2020,131: 104735.
[66] HAZBAVI Z, SADEGHI S H R. Watershed health characterization using reliability–resilience–vulnerability conceptual framework based on hydrological responses[J]. Land Degrad Dev, 2017,28(5): 1528-1537.
[67] AHN S, KIM S. Assessment of watershed health, vulnerability and resilience for determining protection and restoration priorities[J]. Environ Modell Softw, 2016,122: 103962.
[68] SWEETAPPLE C, ASTARAIE-IMANI M, BUTLER D. Design and operation of urban wastewater systems considering reliability, risk and resilience[J]. Water Res, 2018,147: 1-12.
[69] GRASHAM C F, KORZENEVICA M, CHARLES K J. On considering climate resilience in urban water security: A review of the vulnerability of the urban poor in sub-Saharan Africa[J]. Wiley Interdiscip Rev Water, 2019,6(3): e1344.
[70] HOEKSTRA A, BUURMAN J, GINKEL K C H. Urban water security: A review[J]. Environ Res Lett, 2018,13(5).
[71] LEANDRO J, CHEN K, WOOD R R, et al. A scalable flood-resilience-index for measuring climate change adaptation: Munich city[J]. Water Res, 2020,173: 115502.
[72] 朱闻博, 王健, 薛菲, 等. 从海绵城市到多维海绵: 系统解决城市水问题[M]. 南京: 江苏凤凰科学技术出版社, 2018: 26-27.
[73] ZHU S, LI D, FENG H, et al. Smart city and resilient city: differences and connections[J]. Wires Data Min Knowl, 2020,10(6).
[74] ILGEN S, SENGERS F, WARDEKKER A. City-to-city learning for urban resilience: the case of water squares in Rotterdam and Mexico city[J]. Water-Sui, 2019,11(5): 983.
[75] 深圳市人民政府办公厅. 2021年深圳市人民政府工作报告[R/OL]. (2021-05-25)
[2022-04-21]. http://www.sz.gov.cn/gkmlpt/content/9/9112/post_9112 756.html#733.
[76] BUTLER D, WARD S, SWEETAPPLE C, et al. Reliable, resilient and sustainable water management: the Safe & SuRe approach[J]. Global Challenges, 2017,1(1): 63-77.
[77] VOGEL R M, BOLOGNESE R A. Storage-reliability-resilience-yield relations for over-year water supply systems[J]. Water Resour Res, 1995,31(3): 645-654.
[78] PAGANO A, PLUCHINOTTA I, GIORDANO R, et al. Drinking water supply in resilient cities: notes from L’Aquila earthquake case study[J]. Sustain Cities Soc, 2017,28: 435-449.
[79] MUGUME S, GOMEZ D, FU G, et al. A global analysis approach for investigating structural resilience in urban drainage systems[J]. Water Res, 2015,81: 15-26.
[80] WANG Y, MENG F, LIU H, et al. Assessing catchment scale flood resilience of urban areas using a grid cell based metric[J]. Water Res, 2019,163: 114852.
[81] MIRAUDA D, CANIANI D, COLUCCI M T, et al. Assessing the fluvial system resilience of the river Bacchiglione to point sources of pollution in Northeast Italy: a novel Water Resilience Index (WRI) approach[J]. Environ Sci Pollut R, 2021,28(27): 36775-36792.
[82] DONG X, GUO H, ZENG S. Enhancing future resilience in urban drainage system: Green versus grey infrastructure[J]. Water Res, 2017,124: 280-289.
[83] MENG F, FU G, BUTLER D. Cost-effective river water quality management using integrated real-time control technology[J]. Environ Sci Technol, 2017,51(17): 9876-9886.
[84] CASAL-CAMPOS A, SADR S M K, FU G, et al. Reliable, resilient and sustainable urban drainage systems: An analysis of robustness under deep uncertainty[J]. Environ Sci Technol, 2018,52(16): 9008-9021.
[85] ZIEMIŃSKA-STOLARSKA A, SKRZYPSKI J. Review of mathematical models of water quality[J]. Ecol Chem Eng S, 2012,19(2): 197-211.
[86] KROEZE C, GABBERT S, HOFSTRA N, et al. Global modelling of surface water quality: a multi-pollutant approach[J]. Curr Opin Env Sust, 2016,23: 35-45.
[87] CHO K H, PACHEPSKY Y, LIGARAY M, et al. Data assimilation in surface water quality modeling: A review[J]. Water Res, 2020,186: 116307.
[88] ZHANG R, QIAN X, YUAN X, et al. Simulation of water environmental capacity and pollution load reduction using QUAL2K for water environmental management[J]. Int J Env Res Pub He, 2012,9: 4504-4521.
[89] 胡珺. 基于QUAL2K模型的水质模拟与水质风险评价[J]. 南水北调与水利科技, 2015,13(06): 1093-1096.
[90] FLYNN K, SUPLEE M, CHAPRA S, et al. Model-based nitrogen and phosphorus (nutrient) criteria for large temperate rivers: 1. model development and application[J]. J Am Water Resour As, 2015,51(2): 421-446.
[91] AKOMEAH E, CHUN K P, LINDENSCHMIDT K. Dynamic water quality modelling and uncertainty analysis of phytoplankton and nutrient cycles for the upper South Saskatchewan River[J]. Environ Sci Pollut R, 2015,22(22): 18239-18251.
[92] 肖依静. WASP模型与QUAL2K模型对北川河水质模拟适宜性研究[D]. 长春: 吉林大学, 2018: 8-9.
[93] LIANG S, JIA H, YANG C, et al. A pollutant load hierarchical allocation method integrated in an environmental capacity management system for Zhushan Bay, Taihu Lake[J]. Sci Total Environ, 2015,533: 223-237.
[94] HUANG C, ZHANG Z. Identification of the most efficient methods for improving water quality in rapid urbanized area using the MIKE 11 modelling system[C]. 2015 Seventh International Conference on Measuring Technology and Mechatronics Automation, 2015:545-548.
[95] CHEN L, DAI Y, ZHI X, et al. Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment[J]. J Hydrol, 2018,559: 110-121.
[96] 深圳市统计局, 国家统计局深圳调查队. 深圳统计年鉴[M].北京: 中国统计出版社, 2021: 3-4.
[97] 毕业亮, 王华彩, 夏兵, 等. 雨源型城市河流水污染特征及水质联合评价: 以深圳龙岗河为例[J]. 环境科学, 2022,43(02): 782-794.
[98] 谢林伸. 深圳市河流水质改善策略研究——以龙岗河流域为例[M].北京: 科学出版社, 2018: 49-54.
[99] 钱海平, 张海平, 于敏, 等. 平原感潮河网水环境模型研究[J]. 中国给水排水, 2013,29(03): 61-65.
[100] 刘洪达. 山地城市重污染河流溶解氧数值模拟研究[D]. 重庆: 重庆大学, 2014: 8-9.
[101] 深圳市市场监督管理局. 水质净化厂出水水质规范: DB4403/T 64—2020[S]. 深圳: 深圳市市场监督管理局, 2020: 4-5.
[102] 中国环境科学研究院. 地表水环境质量标准: GB 3838-2002[S]. 北京: 国家环境保护总局;国家质量监督检验检疫总局, 2002: 2-3.
[103] REN N, WANG Q, WANG Q, et al. Upgrading to urban water system 3.0 through sponge city construction[J]. Front Env Sci Eng, 2017,11(4): 9.
[104] JIANG H, HUA M, ZHANG J, et al. Sustainability efficiency assessment of wastewater treatment plants in China: A data envelopment analysis based on cluster benchmarking[J]. J Clean Prod, 2020,244: 118729.
[105] WANG X, WANG X, HUPPES G, et al. Environmental implications of increasingly stringent sewage discharge standards in municipal wastewater treatment plants: case study of a cool area of China[J]. J Clean Prod, 2015,94: 278-283.
[106] 范育鹏, 陈卫平. 北京市再生水利用生态环境效益评估[J]. 环境科学, 2014,35(10): 4003-4008.
[107] GOLDBERG D E, HOLLAND J H. Genetic algorithms and machine learning[J]. Mach Learn, 1988,3(2): 95-99.
[108] HOLLAND J H. Genetic algorithms[J]. Sci Am, 1992,267(1): 66-72.
[109] BÄCK T, SCHWEFEL H. An Overview of evolutionary algorithms for parameter optimization[J]. Evol Comput, 1993,1: 1-23.
[110] S M. Genetic Algorithm[M]//Evolutionary algorithms and neural networks: theory and applications. Cham: Springer International Publishing, 2019:43-55.
[111] SWEETAPPLE C, FU G, BUTLER D. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions[J]. Water Res, 2014,55: 52-62.
[112] MENG F, FU G, BUTLER D. Water quality permitting: From end-of-pipe to operational strategies[J]. Water Res, 2016,101: 114-126.

所在学位评定分委会
环境科学与工程学院
国内图书分类号
X52
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336015
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
吴青萍. 生态补水提升城市水环境韧性的潜力研究:以龙岗河流域为例[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930623-吴青萍-环境科学与工程(6803KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴青萍]的文章
百度学术
百度学术中相似的文章
[吴青萍]的文章
必应学术
必应学术中相似的文章
[吴青萍]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。