[1] ACUTO M, PARNELL S, SETO K C. Building a global urban science[J]. Nat Sustain, 2018,1(1): 2-4.
[2] 中华人民共和国国家统计局. 中华人民共和国2019年国民经济和社会发展统计公报[R/OL]. (2020-02-28)
[2022-04-21]. http://www.stats.gov.cn/tjsj/zxfb/202002/t20200228_1728913.html.
[3] STROKAL M, BAI Z, FRANSSEN W, et al. Urbanization: an increasing source of multiple pollutants to rivers in the 21st century[J]. npj Urban Sustain, 2021,1(1): 24.
[4] MA T, SUN S, FU G, et al. Pollution exacerbates China’s water scarcity and its regional inequality[J]. Nat Commun, 2020,11(1): 650.
[5] 中华人民共和国国务院. 国务院关于印发水污染防治行动计划的通知[EB/OL]. (2015-03-24)
[2022-04-21]. https://www.mee.gov.cn/zcwj/gwywj/201811/t20181129_676575.shtml.
[6] CHEN G, LUO J, ZHANG C, et al. Characteristics and influencing factors of spatial differentiation of urban black and odorous waters in China[J]. Sustainability-Basel, 2018,10: 4747.
[7] 徐祖信, 徐晋, 金伟, 等. 我国城市黑臭水体治理面临的挑战与机遇[J]. 给水排水, 2019,55(03): 1-5.
[8] 毕业亮, 王华彩, 夏兵, 等. 雨源型城市河流水污染特征及水质联合评价: 以深圳龙岗河为例[J]. 环境科学, 2022,43(02): 782-794.
[9] 王谦, 王秋茹, 王秀蘅, 等. 城市雨源型河流生态补水治理案例研究[J]. 给水排水, 2017,53(10): 47-53.
[10] CHEN C, WANG S, KIM H, et al. Non-conventional water reuse in agriculture: A circular water economy[J]. Water Res, 2021,199: 117193.
[11] 中华人民共和国住房和城乡建设部. 中国城乡建设统计年鉴[M]. 北京: 中国统计出版社, 2020: 56-59.
[12] 商放泽, 黄跃飞, 孙小玲, 等. 深圳市现状及未来水污染防治效果评价[J]. 环境科学与技术, 2019,42(S2): 132-139.
[13] 深圳市水务局. 深圳市治水提质工作计划(2015—2020年) [R/OL]. (2016-01-28)
[2022-04-21]. http://swj.sz.gov.cn/ztzl/ndmsss/yldzl/xgzc/201612/P020161207365500206778.pdf.
[14] LIU L, MA X. Integrated river basin management in rapidly urbanizing areas: a case of Shenzhen, China[J]. Front Environ Sci Engin China, 2011,5(2): 243-254.
[15] 深圳市水务局. 2020年深圳市水资源公报[R/OL]. (2021-09-08)
[2022-04-21]. http://swj.sz.gov.cn/attachment/0/849/849246/9113900.pdf.
[16] HUANG C, ZHANG J, HU G, et al. Characterization of the distribution, source, and potential ecological risk of perfluorinated alkyl substances (PFASs) in the inland river basin of Longgang District, South China[J]. Environ Pollut, 2021,287: 117642.
[17] GAO C, GAO C, SONG K, et al. Regional water ecosystem risk assessment based on GIS and pollutant diffusion model: A case study of Shenzhen eco-industrial park[J]. Process Saf Environ, 2019,130: 182-189.
[18] ZHUANG W. Eco-environmental impact of inter-basin water transfer projects: a review[J]. Environ Sci Pollut R, 2016,23(13): 12867-12879.
[19] SHUMILOVA O, TOCKNER K, THIEME M, et al. Global water transfer megaprojects: a potential solution for the water-food-energy nexus?[J]. Front Environ Sci, 2018,6.
[20] LIN M, LEK S, REN P, et al. Predicting impacts of south-to-north water transfer project on fish assemblages in Hongze Lake, China[J]. J Appl Ichthyol, 2017,33.
[21] ASANO T, LEVINE A D. Wastewater reclamation, recycling and reuse: past, present, and future[J]. Water Sci Technol, 1996,33(10): 1-14.
[22] NAS B, UYANIK S, AYGÜN A, et al. Wastewater reuse in Turkey: from present status to future potential[J]. Water Sci Technol Water Supply, 2019,20(1): 73-82.
[23] CHEN Z, NGO H H, GUO W. A critical review on the end uses of recycled water[J]. Crit Rev Env Sci Tec, 2013,43(14): 1446-1516.
[24] FAN Y, CHEN W, JIAO W, et al. Cost-benefit analysis of reclaimed wastewater reuses in Beijing[J]. Desalin Water Treat, 2015,53(5): 1224-1233.
[25] 中华人民共和国住房和城乡建设部. 中国城乡建设统计年鉴[M].北京: 中国统计出版社, 2019: 56-59.
[26] GU Q, CHEN Y, PODY R, et al. Public perception and acceptability toward reclaimed water in Tianjin[J]. Resour Conserv Recycl, 2015,104: 291-299.
[27] 王子钊, 王卓, 陶益, 等. 再生水用于深圳河流补水效果的研究[J]. 水利水电技术, 2015,46(02): 34-38.
[28] 胡爱兵, 杨少平, 任心欣. 深圳市再生水工作回顾与展望[J]. 中国给水排水, 2021,37(08): 18-23.
[29] 马涛, 刘九夫, 彭安帮, 等. 中国非常规水资源开发利用进展[J]. 水科学进展, 2020,31(06): 960-969.
[30] 郭兴芳. 污水再生景观环境利用政策标准发展历程[EB/OL]. (2020-6-12)
[2022-04-21]. https://huanbao.bjx.com.cn/news/20200612/1080741.shtml.
[31] YU Y, MA M, ZHENG F, et al. Spatio-temporal variation and controlling factors of water quality in Yongding River replenished by reclaimed water in Beijing, North China[J]. Water-Sui, 2017,9: 453.
[32] XIE E, ZHAO X, LI K, et al. Microbial community structure in the river sediments from upstream of Guanting Reservoir: potential impacts of reclaimed water recharge[J]. Sci Total Environ, 2021,766: 142609.
[33] ZHU L, CHEN Y, WANG Y, et al. Ecological assessment of water quality in an urban river replenished with reclaimed water: the phytoplankton functional groups approach[J]. Environ Res, 2021,3(11): 115006.
[34] SANCHÍS SANDOVAL J, PETROVIĆ M, FARRÉ M. Emission of (chlorinated) reclaimed water into a Mediterranean River and its related effects to the dissolved organic matter fingerprint[J]. Sci Total Environ, 2020,760: 143881.
[35] MENG J, ZHOU Y, LIU S, et al. Increasing perfluoroalkyl substances and ecological process from the Yongding Watershed to the Guanting Reservoir in the Olympic host cities, China[J]. Environ Int, 2019,133: 105224.
[36] 王永刚, 王旭, 孙长虹, 等. 再生水补给型城市河流水质改善效果模拟[J]. 环境科学与技术, 2017,40(06): 54-60.
[37] 卿晓霞, 张会波, 周健, 等. 伏牛溪水污染治理效果的数值模拟研究[J]. 环境工程学报, 2015,9(01): 65-72.
[38] 田凯达, 刘晓薇, 王慧, 等. MIKE11模型在合肥市十五里河水质改善研究中的应用[J]. 水文, 2019,39(04): 18-23.
[39] 周文琦, 俞芳琴, 韩璐遥, 等. 生态补水对城南河水质水量改善效果研究[J]. 南水北调与水利科技, 2020,18(03): 151-157.
[40] 熊鸿斌, 陈雪, 张斯思. 基于MIKE11模型提高污染河流水质改善效果的方法[J]. 环境科学, 2017,38(12): 5063-5073.
[41] AO D, LUO L, DZAKPASU M, et al. Replenishment of landscape water with reclaimed water: Optimization of supply scheme using transparency as an indicator[J]. Ecol Indic, 2018,88: 503-511.
[42] CHHIPI-SHRESTHA G, RODRIGUEZ M, SADIQ R. Selection of sustainable municipal water reuse applications by multi-stakeholders using game theory[J]. Sci Total Environ, 2019,650: 2512-2526.
[43] 刘阳. 城市河流水文情势分析及生态调度研究[D]. 济南: 山东大学, 2020: 7-9.
[44] SUN K, HU L, GUO J, et al. Enhancing the understanding of hydrological responses induced by ecological water replenishment using improved machine learning models: A case study in Yongding River[J]. Sci Total Environ, 2021,768: 145489.
[45] 北京水务. 北京市水资源调度(2021汛后-2022汛前)[EB/OL]. (2022-03-20)
[2022-04-21]. http://nsbd.swj.beijing.gov.cn:8088/uacp_whole_basin/pageview/bjsw/main.
[46] 邹江. 九洲江重要的生态补水系统即将试运行[EB/OL]. (2021-12-05)
[2022-04-21]. https://www.gxylnews.com/html/news/2021/12/226717.html.
[47] EPA. Frequently asked questions on removal of obsolete dams[EB/OL]. (2016-12-15)
[2022-04-21]. https://www.epa.gov/sites/default/files/2016- 12/documents/2016_december_2_clean_final_dam_removal_faqs_0.pdf.
[48] SCHIERMEIER Q. Europe is demolishing its dams to restore ecosystems[J]. Nature, 2018,557(7706): 290-292.
[49] 彭溢, 廖国威, 谢林伸, 等. 深圳市利用小(2)型水库进行河流生态补水研究[J]. 环境工程, 2016,34(02): 51-53.
[50] ACREMAN M C, DUNBAR M J. Defining environmental river flow requirements - a review[J]. Hydrol Earth Syst Sc, 2004,8: 861-876.
[51] HARMAN C, STEWARDSON M. Optimizing dam release rules to meet environmental flow targets[J]. River Res Appl, 2005,21(2-3): 113-129.
[52] YAN Z, ZHOU Z, SANG X, et al. Water replenishment for ecological flow with an improved water resources allocation model[J]. Sci Total Environ, 2018,643: 1152-1165.
[53] TSAI W, CHANG F, CHANG L, et al. AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands[J]. J Hydrol, 2015,530: 634-644.
[54] CHEN M H. Water Regulation and Water Resources Management Selections for North China: using Beiyun River Basin as an Example[Z]. 5th International Yellow River Forum on Ensuring Water Right of the River's Demand and Healthy River Basin maintenance: 2015, 182-192.
[55] HOLLING C S. Resilience and stability of ecological systems[J]. Annu Rev Ecol Evol S, 1973,4: 1-23.
[56] NGUYEN T, CAI X, OUYANG Y, et al. Modelling infrastructure interdependencies, resiliency and sustainability[J]. Int J Control, 2016,12: 4.
[57] LU H, KANG Y, LIU L, et al. Comprehensive groundwater safety assessment under potential shale gas contamination based on integrated analysis of reliability–resilience–vulnerability and gas migration index[J]. J Hydrol, 2019,578: 124072.
[58] FRANCIS R, BEKERA B. A metric and frameworks for resilience analysis of engineered and infrastructure systems[J]. Reliab Eng Syst Safe, 2014,121: 90-103.
[59] CAI B, XIE M, LIU Y, et al. Availability-based engineering resilience metric and its corresponding evaluation methodology[J]. Reliab Eng Syst Safe, 2018,172: 216-224.
[60] ALBERTI M, MARZLUFF J. Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions[J]. Urban Ecosyst, 2004,7: 241-265.
[61] WALKER B, HOLLIN C S, CARPENTER S R, et al. Resilience, adaptability and transformability in social-ecological systems[J]. Ecol Soc, 2004,9(2).
[62] SCHOON M, Van der LEEUW S. The shift toward social-ecological systems perspectives: insights into the human-nature relationship[J]. Natures Sciences Sociétés, 2015,23: 166-174.
[63] HASHIMOTO T, STEDINGER J R, LOUCKS D P. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation[J]. Water Resour Res, 1982,18(1): 14-20.
[64] ASEFA T, CLAYTON J, ADAMS A, et al. Performance evaluation of a water resources system under varying climatic conditions: reliability, resilience, vulnerability and beyond[J]. J Hydrol, 2014,508: 53-65.
[65] MALLYA G, GUPTA A, HANTUSH M M, et al. Uncertainty quantification in reconstruction of sparse water quality time series: Implications for watershed health and risk-based TMDL assessment[J]. Environ Modell Softw, 2020,131: 104735.
[66] HAZBAVI Z, SADEGHI S H R. Watershed health characterization using reliability–resilience–vulnerability conceptual framework based on hydrological responses[J]. Land Degrad Dev, 2017,28(5): 1528-1537.
[67] AHN S, KIM S. Assessment of watershed health, vulnerability and resilience for determining protection and restoration priorities[J]. Environ Modell Softw, 2016,122: 103962.
[68] SWEETAPPLE C, ASTARAIE-IMANI M, BUTLER D. Design and operation of urban wastewater systems considering reliability, risk and resilience[J]. Water Res, 2018,147: 1-12.
[69] GRASHAM C F, KORZENEVICA M, CHARLES K J. On considering climate resilience in urban water security: A review of the vulnerability of the urban poor in sub-Saharan Africa[J]. Wiley Interdiscip Rev Water, 2019,6(3): e1344.
[70] HOEKSTRA A, BUURMAN J, GINKEL K C H. Urban water security: A review[J]. Environ Res Lett, 2018,13(5).
[71] LEANDRO J, CHEN K, WOOD R R, et al. A scalable flood-resilience-index for measuring climate change adaptation: Munich city[J]. Water Res, 2020,173: 115502.
[72] 朱闻博, 王健, 薛菲, 等. 从海绵城市到多维海绵: 系统解决城市水问题[M]. 南京: 江苏凤凰科学技术出版社, 2018: 26-27.
[73] ZHU S, LI D, FENG H, et al. Smart city and resilient city: differences and connections[J]. Wires Data Min Knowl, 2020,10(6).
[74] ILGEN S, SENGERS F, WARDEKKER A. City-to-city learning for urban resilience: the case of water squares in Rotterdam and Mexico city[J]. Water-Sui, 2019,11(5): 983.
[75] 深圳市人民政府办公厅. 2021年深圳市人民政府工作报告[R/OL]. (2021-05-25)
[2022-04-21]. http://www.sz.gov.cn/gkmlpt/content/9/9112/post_9112 756.html#733.
[76] BUTLER D, WARD S, SWEETAPPLE C, et al. Reliable, resilient and sustainable water management: the Safe & SuRe approach[J]. Global Challenges, 2017,1(1): 63-77.
[77] VOGEL R M, BOLOGNESE R A. Storage-reliability-resilience-yield relations for over-year water supply systems[J]. Water Resour Res, 1995,31(3): 645-654.
[78] PAGANO A, PLUCHINOTTA I, GIORDANO R, et al. Drinking water supply in resilient cities: notes from L’Aquila earthquake case study[J]. Sustain Cities Soc, 2017,28: 435-449.
[79] MUGUME S, GOMEZ D, FU G, et al. A global analysis approach for investigating structural resilience in urban drainage systems[J]. Water Res, 2015,81: 15-26.
[80] WANG Y, MENG F, LIU H, et al. Assessing catchment scale flood resilience of urban areas using a grid cell based metric[J]. Water Res, 2019,163: 114852.
[81] MIRAUDA D, CANIANI D, COLUCCI M T, et al. Assessing the fluvial system resilience of the river Bacchiglione to point sources of pollution in Northeast Italy: a novel Water Resilience Index (WRI) approach[J]. Environ Sci Pollut R, 2021,28(27): 36775-36792.
[82] DONG X, GUO H, ZENG S. Enhancing future resilience in urban drainage system: Green versus grey infrastructure[J]. Water Res, 2017,124: 280-289.
[83] MENG F, FU G, BUTLER D. Cost-effective river water quality management using integrated real-time control technology[J]. Environ Sci Technol, 2017,51(17): 9876-9886.
[84] CASAL-CAMPOS A, SADR S M K, FU G, et al. Reliable, resilient and sustainable urban drainage systems: An analysis of robustness under deep uncertainty[J]. Environ Sci Technol, 2018,52(16): 9008-9021.
[85] ZIEMIŃSKA-STOLARSKA A, SKRZYPSKI J. Review of mathematical models of water quality[J]. Ecol Chem Eng S, 2012,19(2): 197-211.
[86] KROEZE C, GABBERT S, HOFSTRA N, et al. Global modelling of surface water quality: a multi-pollutant approach[J]. Curr Opin Env Sust, 2016,23: 35-45.
[87] CHO K H, PACHEPSKY Y, LIGARAY M, et al. Data assimilation in surface water quality modeling: A review[J]. Water Res, 2020,186: 116307.
[88] ZHANG R, QIAN X, YUAN X, et al. Simulation of water environmental capacity and pollution load reduction using QUAL2K for water environmental management[J]. Int J Env Res Pub He, 2012,9: 4504-4521.
[89] 胡珺. 基于QUAL2K模型的水质模拟与水质风险评价[J]. 南水北调与水利科技, 2015,13(06): 1093-1096.
[90] FLYNN K, SUPLEE M, CHAPRA S, et al. Model-based nitrogen and phosphorus (nutrient) criteria for large temperate rivers: 1. model development and application[J]. J Am Water Resour As, 2015,51(2): 421-446.
[91] AKOMEAH E, CHUN K P, LINDENSCHMIDT K. Dynamic water quality modelling and uncertainty analysis of phytoplankton and nutrient cycles for the upper South Saskatchewan River[J]. Environ Sci Pollut R, 2015,22(22): 18239-18251.
[92] 肖依静. WASP模型与QUAL2K模型对北川河水质模拟适宜性研究[D]. 长春: 吉林大学, 2018: 8-9.
[93] LIANG S, JIA H, YANG C, et al. A pollutant load hierarchical allocation method integrated in an environmental capacity management system for Zhushan Bay, Taihu Lake[J]. Sci Total Environ, 2015,533: 223-237.
[94] HUANG C, ZHANG Z. Identification of the most efficient methods for improving water quality in rapid urbanized area using the MIKE 11 modelling system[C]. 2015 Seventh International Conference on Measuring Technology and Mechatronics Automation, 2015:545-548.
[95] CHEN L, DAI Y, ZHI X, et al. Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment[J]. J Hydrol, 2018,559: 110-121.
[96] 深圳市统计局, 国家统计局深圳调查队. 深圳统计年鉴[M].北京: 中国统计出版社, 2021: 3-4.
[97] 毕业亮, 王华彩, 夏兵, 等. 雨源型城市河流水污染特征及水质联合评价: 以深圳龙岗河为例[J]. 环境科学, 2022,43(02): 782-794.
[98] 谢林伸. 深圳市河流水质改善策略研究——以龙岗河流域为例[M].北京: 科学出版社, 2018: 49-54.
[99] 钱海平, 张海平, 于敏, 等. 平原感潮河网水环境模型研究[J]. 中国给水排水, 2013,29(03): 61-65.
[100] 刘洪达. 山地城市重污染河流溶解氧数值模拟研究[D]. 重庆: 重庆大学, 2014: 8-9.
[101] 深圳市市场监督管理局. 水质净化厂出水水质规范: DB4403/T 64—2020[S]. 深圳: 深圳市市场监督管理局, 2020: 4-5.
[102] 中国环境科学研究院. 地表水环境质量标准: GB 3838-2002[S]. 北京: 国家环境保护总局;国家质量监督检验检疫总局, 2002: 2-3.
[103] REN N, WANG Q, WANG Q, et al. Upgrading to urban water system 3.0 through sponge city construction[J]. Front Env Sci Eng, 2017,11(4): 9.
[104] JIANG H, HUA M, ZHANG J, et al. Sustainability efficiency assessment of wastewater treatment plants in China: A data envelopment analysis based on cluster benchmarking[J]. J Clean Prod, 2020,244: 118729.
[105] WANG X, WANG X, HUPPES G, et al. Environmental implications of increasingly stringent sewage discharge standards in municipal wastewater treatment plants: case study of a cool area of China[J]. J Clean Prod, 2015,94: 278-283.
[106] 范育鹏, 陈卫平. 北京市再生水利用生态环境效益评估[J]. 环境科学, 2014,35(10): 4003-4008.
[107] GOLDBERG D E, HOLLAND J H. Genetic algorithms and machine learning[J]. Mach Learn, 1988,3(2): 95-99.
[108] HOLLAND J H. Genetic algorithms[J]. Sci Am, 1992,267(1): 66-72.
[109] BÄCK T, SCHWEFEL H. An Overview of evolutionary algorithms for parameter optimization[J]. Evol Comput, 1993,1: 1-23.
[110] S M. Genetic Algorithm[M]//Evolutionary algorithms and neural networks: theory and applications. Cham: Springer International Publishing, 2019:43-55.
[111] SWEETAPPLE C, FU G, BUTLER D. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions[J]. Water Res, 2014,55: 52-62.
[112] MENG F, FU G, BUTLER D. Water quality permitting: From end-of-pipe to operational strategies[J]. Water Res, 2016,101: 114-126.
修改评论