[1] 赵森. 新松机器人在打磨抛光领域的应用分析[J]. 内燃机与件,2021(7):36-37.
[2] 李先亮,何志新.埃夫特机器人在打磨抛光领域的应用[J]. 机器人技术与应用,2016(4):23-26.
[3] 王敏. 基于视觉和力反馈的机器人打磨作业系统研究[D]. 浙江大学,2019.
[4] N HOGAN. Impedance control: An approach to manipulation, part I - theory, ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 1–7, 1985.
[5] N HOGAN. Impedance control: An approach to manipulation, part Ⅱ - Implementation, ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 8–16, 1985.
[6] N HOGAN. Impedance control: An approach to manipulation, part Ⅲ - Applications, ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 17–24, 1985.
[7] O KHATIB. A unified approach for motion and force control of robot manipulators: The operational space formulation, in IEEE Journal on Robotics and Automation, vol3, no.1, pp. 43-53, February 1987.
[8] R J ANDERSON, M W SPONG, "Hybrid impedance control of robotic manipulators," in IEEE Journal on Robotics and Automation, vol. 4, no. 5, pp. 549-556, Oct. 1988.
[9] SERAJI H. COLBAUGH R. Force tracking in impedance control[C]. IEEE International Conference on Robotics and Automation, 1993. Proceedings. IEEE, 2002: 499-506 vol.2.
[10] RAIBERT M H, CRAIG J. (June 1, 1981). "Hybrid Position/Force Control of Manipulators." ASME. J. Dyn. Sys., Meas., Control. June 1981; 103(2): 126–133.
[11] XIE Y, BHUSHAN B. Effects of particle size, polishing pad and contact pressure in free abrasive polishing[J], Wear, 200(1-2), 281-295.
[12] JONES R A. Optimization of computer-controlled polishing[J]. Applied Optics, 1977, 16(1):218-24.
[13] JONES R A. Fabrication using the computer-controlled polisher[J]. Applied Optics, 1978, 17(12):1889-92.
[14] YANG M Y, LEE H C. Local material removal mechanism considering curvature effect in the polishing process of the small aspherical lens die[J]. Journal of Materials Processing Tech, 2001, 116(2-3):298-304.
[15] TSAI M J, HUANG J F, KAO W L. Robotic polishing of precision molds with uniform material removal control[J]. International Journal of Machine Tools & Manufacture, 2009, 49(11):885-895.
[16] TSAI M J, FANG J J, HUANG J F. Automatic Polishing of Super Accuracy Mirror Mold with Free-Form Surface by Curvature Analysis[J]. Materials Science Forum, 2006, 505-507:547-552.
[17] FENG D, SUN Y, DU H. Investigations on the automatic precision polishing of curved surfaces using a five-axis machining center [J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(9-12):1625-1637.
[18] BRECHER C, NITTINGER J A. Control and path planning method for simultaneous manufacturing with robot and milling machine[C] 2017 IEEE Conference on Control Technology and Applications (CCTA). IEEE, 2017: 714-719.
[19] MATHIAS H, ISOLDE D, ANDERS R, KLAS N, TORGNY B, ROLF J, Reconfigurable Parallel Kinematic Manipulator for Flexible Manufacturing, IFAC Proceedings Volumes, Volume 42, Issue 4, 2009, Pages 145-150.
[20] Duan J J, GAN Y H, CHEN M, DAI X Z. Adaptive Variable Impedance Control for Dynamic Contact Force Tracking in Uncertain Environment [J]. Robotics and Autonomous Systems, 2018,102:54-65.
[21] ZHANG L, TAM H Y, YUAN C M, et al. On the removal of material along a polishing path by fixed abrasives[J]. Proceeding of the Institute of Mechanical Engineers. part B. Journal of Engineering Manufacture, 2002, 216(9):1217-1225.
[22] ZHANG L, H Y TAM, YUAN C M, CHEN Y P, ZHOU Z D. An investigation of material removal in polishing with fixed abrasives[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2002,216(1):103-112.
[23] TIAN F J, Li Z, LV C, et al. Polishing pressure investigations of robot automatic polishing on curved surfaces. Int J Adv Manuf Technol 87, 639–646 (2016).
[24] 刘志恒.基于力反馈的打磨机器人控制系统研究[D]哈尔滨工业大学,2017.
[25] 王健,郭隐彪,朱睿.光学非球面元件机器人柔性抛光技术[J].厦门大学学报(自然科学版),2010,49(05):636-639.
[26] 王敏. 基于视觉和力反馈的机器人打磨作业系统研究[D]浙江大学,2017.
[27] 基于六维力传感器的打磨机器人的设计与实现[D]东南大学,2017.
[28] 张庆伟,韩利利,徐方.基于打磨机器人的力/位混合控制策略研究[J]. 化工自动化及仪表,2012,39(7):884-887.
[29] 曲梦可 ,王洪波, 荣誉. 一种打磨机械臂的静刚度建模与实验[J].中国机械工程,2017,28(20):2395-2401.
[30] 黄智,吴湘,刘海涛,万勇建,郑晓,陈祥.机器人恒压球形公自转磨头抛光技术研究[J].中国机械工程,2020,31(05):519-526.
[31] 熊良山,严晓光,张福润.机械制造技术基础[M]. 武汉:华中科技大学出版社,2006:129-131.
[32] 王德泉,陈艳.砂轮特性与磨削加工[M].北京:中国标准出版社,2001:36-40.
[33] 铁贵鹏.自由曲面光学元件慢刀伺服加工关键技术研究[D]. 国防科学技术大 学,2009.
[34] 黄鸿辉.光学自由曲面超精密车铣加工运动学分析及仿真研究[D]. 哈尔滨工业大学,2017.
[35] 田勇,王洪光,潘新安,胡明伟. 协作机器人的构型分析研究 [J]. 智能系统学报,2019,14(02)217-223.
[36] B. A. LIEFEOIS. Automatic supervisory control of the configuration and behavior of multibody mechanisms, IEEE Transactions on Systems Man & Cybernetics, 7 (12) (1977) 868-871.
[37] F C TAN and R V DUBEY. A weighted least-norm solution-based scheme for avoiding joint limits for redundant joint manipulators, IEEE Transactions on Robotics & Automation, 11 (2) (1995) 286-292.
[38] M BENZAOUI, H. CHEKIREB and M. TADJINE. Redundant robot manipulator control with obstacle avoidance using an extended jacobian method, Proc. of 18th Mediterranean Conference on Control & Automation, Marrakech, MAR (2010) 371-376.
[39] M SHIMIZU, H KAKUYA, W K Yoon, K KITAGAKI and K KOSUGE. Analytical inverse kinematic computation for 7-DOF redundant manipulators with joint limits and its application to redundancy resolution, IEEE Transactions on Robotics, 24 (5) (2008) 1131-1142.
[40] R C LUO, T W LIN and Y H TSAI. Analytical inverse kinematic solution for modularized 7-DOF redundant manipulators with offsets at shoulder and wrist, Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA (2014) 516-521.
[41] J K PARKER, A R KHOOGAR and D E GOLDBERG. Inverse kinematics of redundant robots using genetic algorithms, Proc. of IEEE International Conference on Robotics and Automation, Scottsdale, AZ, USA (1989) 271-276.
[42] H C HUANG, C P CHEN, and P R WANG. Particle swarm optimization for solving the inverse kinematics of 7-DOF robotic manipulators, Proc. of IEEE International Conference on Systems, Man, and Cybernetics, Seoul, KOR (2012) 3105-3110.
[43] Z W REN, Z H WANG and L N SUN. A hybrid biogeography-based optimization method for the inverse kinematics problem of an 8-DOF redundant humanoid manipulator, Frontiers of Information Technology & Electronic Engineering, 16 (7) (2015) 607-616.
[44] 李正义.机器人与环境间力/位置控制技术研究与应用[D].华中科技大学,2011.
[45] JINJUN DUAN, YAHUI GAN, MING CHEN, XIANZHONG DAI. Adaptive variable impedance control for dynamic contact force tracking in an uncertain environment[J], Robotics and Autonomous Systems, Volume 102, 2018, Pages 54-65.
[46] KEVIN M, LYNCH, FRANK C P. ROBOTICS MECHANICS, PLANNING, AND CONTROL[M]. Cambridge University Press, 2017.
[47] M. SHIMIZU, H. KAKUYA, W. YOON, K. KITAGAKI, and K. KOSUGE, "Analytical Inverse Kinematic Computation for 7-DOF Redundant Manipulators With Joint Limits and Its Application to Redundancy Resolution, IEEE Transactions on Robotics, vol.24, no.5, pp. 1131- 1142, 2008.
[48] KHALIL W, DUMBER E, MODELING, Identification and Control of Robots[J].2002.
[49] GAUTIER M, KHALIL W. A direct determination of minimum inertial parameters of robots[C]. Proceedings. 1988 IEEE International Conference on Robotics and Automation.2002.
[50] PETERS J, MISTRY M, UDWADIA F, et al. A unifying methodology for the control of robotic systems. In: Proceedings of ICRA, Edmonton, Alberta, Canada, 2 August 2005, pp. 1824–1831.
[51] N HOGAN. Stable execution of contact tasks using impedance control. In: Proceedings of ICRA, Raleigh, NC, USA, 31 March 1987, pp. 1047–1054.
[52] GL XIONG, Y ZHOU, and JK YAO. Null-space impedance control of 7-degree-of-freedom redundant manipulators based on the arm angles[J]. International Journal of Advanced RoboticSystems,2020,17(3):1-14.
[53] 崔超然.基于动力学参数辨识的阻抗控制研究[D].哈尔滨工业大学,2021.
[54] QIN ZHONGKAI, BARON L, BIRGLEN L. A new approach to the dynamic parameter identification of robotic manipulators[J]. Robotica, 2010. 28(4)P539-547.
[55] 肖维荣,齐蓉.装备自动化工程设计与实践[M].北京:机械工业出版社,2021: 46-56.
修改评论