中文版 | English
题名

基于七轴协作机械臂的刚性材料打磨平台

其他题名
RIGID MATERIAL GRINDING PLATFORM BASED ON SEVEN AXIS COOPERATIVE MANIPULATOR
姓名
姓名拼音
DUAN Guangjian
学号
12032441
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
潘阳
导师单位
机械与能源工程系
论文答辩日期
2022-05-10
论文提交日期
2022-06-18
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
    随着中国制造业的不断升级,自动化水平不断提升,人工成本不断增加,机器人换人已经是迫在眉睫的任务,对于打磨抛光工艺来说,由于环境恶劣,常常伴有粉尘、噪声等污染,对人体伤害很大,因此对打磨抛光机器人的研究显得十分重要。
    目前的许多打磨抛光机器人研究多是在现有商业化的工业机器人平台上进行的,由于系统的封闭性,常常不能从底层进行力控技术的算法设计。
本文通过对市场上常见的七轴协作机器人构型的分析,针对机器人打磨工作的特点,提出了一种全关节偏置的七轴协作机器人构型,并针对这种构型进行了数值解算法验证和运动规划。
    除此之外,机械人力控算法是近年来的研究热点,而力控算法中的曲面恒力跟踪是算法难点,本文结合实际打磨工艺,分析了打磨过程中曲面的受力情况,提出了一种依赖平面力跟踪阻抗系数的曲面阻抗系数调节算法,并对实际打磨工艺的核心算法进行总结提炼和优化。
    面对平面与曲面交替进行的打磨工况,由于打磨过程中工件与刀具的接触面积不断变化,恒定的期望力会导致打磨压力的变化,本文提出了基于变接触面积估计计算变期望力的方法,并进行了实际验证,验证了算法的有效性。
    最后,本文对整个机器人打磨抛光工作站系统进行了整体设计,对打磨工具和打磨材料进行了分类统计,并依据其特性进行了工具和材料的选型。并进行了控制变量实验,对影响打磨质量的力、速度等因素对实际打磨效果的影响进行了验证,最终材料表面光影去除效果达到目视检测要求。
关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] 赵森. 新松机器人在打磨抛光领域的应用分析[J]. 内燃机与件,2021(7):36-37.
[2] 李先亮,何志新.埃夫特机器人在打磨抛光领域的应用[J]. 机器人技术与应用,2016(4):23-26.
[3] 王敏. 基于视觉和力反馈的机器人打磨作业系统研究[D]. 浙江大学,2019.
[4] N HOGAN. Impedance control: An approach to manipulation, part I - theory, ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 1–7, 1985.
[5] N HOGAN. Impedance control: An approach to manipulation, part Ⅱ - Implementation, ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 8–16, 1985.
[6] N HOGAN. Impedance control: An approach to manipulation, part Ⅲ - Applications, ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 17–24, 1985.
[7] O KHATIB. A unified approach for motion and force control of robot manipulators: The operational space formulation, in IEEE Journal on Robotics and Automation, vol3, no.1, pp. 43-53, February 1987.
[8] R J ANDERSON, M W SPONG, "Hybrid impedance control of robotic manipulators," in IEEE Journal on Robotics and Automation, vol. 4, no. 5, pp. 549-556, Oct. 1988.
[9] SERAJI H. COLBAUGH R. Force tracking in impedance control[C]. IEEE International Conference on Robotics and Automation, 1993. Proceedings. IEEE, 2002: 499-506 vol.2.
[10] RAIBERT M H, CRAIG J. (June 1, 1981). "Hybrid Position/Force Control of Manipulators." ASME. J. Dyn. Sys., Meas., Control. June 1981; 103(2): 126–133.
[11] XIE Y, BHUSHAN B. Effects of particle size, polishing pad and contact pressure in free abrasive polishing[J], Wear, 200(1-2), 281-295.
[12] JONES R A. Optimization of computer-controlled polishing[J]. Applied Optics, 1977, 16(1):218-24.
[13] JONES R A. Fabrication using the computer-controlled polisher[J]. Applied Optics, 1978, 17(12):1889-92.
[14] YANG M Y, LEE H C. Local material removal mechanism considering curvature effect in the polishing process of the small aspherical lens die[J]. Journal of Materials Processing Tech, 2001, 116(2-3):298-304.
[15] TSAI M J, HUANG J F, KAO W L. Robotic polishing of precision molds with uniform material removal control[J]. International Journal of Machine Tools & Manufacture, 2009, 49(11):885-895.
[16] TSAI M J, FANG J J, HUANG J F. Automatic Polishing of Super Accuracy Mirror Mold with Free-Form Surface by Curvature Analysis[J]. Materials Science Forum, 2006, 505-507:547-552.
[17] FENG D, SUN Y, DU H. Investigations on the automatic precision polishing of curved surfaces using a five-axis machining center [J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(9-12):1625-1637.
[18] BRECHER C, NITTINGER J A. Control and path planning method for simultaneous manufacturing with robot and milling machine[C] 2017 IEEE Conference on Control Technology and Applications (CCTA). IEEE, 2017: 714-719.
[19] MATHIAS H, ISOLDE D, ANDERS R, KLAS N, TORGNY B, ROLF J, Reconfigurable Parallel Kinematic Manipulator for Flexible Manufacturing, IFAC Proceedings Volumes, Volume 42, Issue 4, 2009, Pages 145-150.
[20] Duan J J, GAN Y H, CHEN M, DAI X Z. Adaptive Variable Impedance Control for Dynamic Contact Force Tracking in Uncertain Environment [J]. Robotics and Autonomous Systems, 2018,102:54-65.
[21] ZHANG L, TAM H Y, YUAN C M, et al. On the removal of material along a polishing path by fixed abrasives[J]. Proceeding of the Institute of Mechanical Engineers. part B. Journal of Engineering Manufacture, 2002, 216(9):1217-1225.
[22] ZHANG L, H Y TAM, YUAN C M, CHEN Y P, ZHOU Z D. An investigation of material removal in polishing with fixed abrasives[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2002,216(1):103-112.
[23] TIAN F J, Li Z, LV C, et al. Polishing pressure investigations of robot automatic polishing on curved surfaces. Int J Adv Manuf Technol 87, 639–646 (2016).
[24] 刘志恒.基于力反馈的打磨机器人控制系统研究[D]哈尔滨工业大学,2017.
[25] 王健,郭隐彪,朱睿.光学非球面元件机器人柔性抛光技术[J].厦门大学学报(自然科学版),2010,49(05):636-639.
[26] 王敏. 基于视觉和力反馈的机器人打磨作业系统研究[D]浙江大学,2017.
[27] 基于六维力传感器的打磨机器人的设计与实现[D]东南大学,2017.
[28] 张庆伟,韩利利,徐方.基于打磨机器人的力/位混合控制策略研究[J]. 化工自动化及仪表,2012,39(7):884-887.
[29] 曲梦可 ,王洪波, 荣誉. 一种打磨机械臂的静刚度建模与实验[J].中国机械工程,2017,28(20):2395-2401.
[30] 黄智,吴湘,刘海涛,万勇建,郑晓,陈祥.机器人恒压球形公自转磨头抛光技术研究[J].中国机械工程,2020,31(05):519-526.
[31] 熊良山,严晓光,张福润.机械制造技术基础[M]. 武汉:华中科技大学出版社,2006:129-131.
[32] 王德泉,陈艳.砂轮特性与磨削加工[M].北京:中国标准出版社,2001:36-40.
[33] 铁贵鹏.自由曲面光学元件慢刀伺服加工关键技术研究[D]. 国防科学技术大 学,2009.
[34] 黄鸿辉.光学自由曲面超精密车铣加工运动学分析及仿真研究[D]. 哈尔滨工业大学,2017.
[35] 田勇,王洪光,潘新安,胡明伟. 协作机器人的构型分析研究 [J]. 智能系统学报,2019,14(02)217-223.
[36] B. A. LIEFEOIS. Automatic supervisory control of the configuration and behavior of multibody mechanisms, IEEE Transactions on Systems Man & Cybernetics, 7 (12) (1977) 868-871.
[37] F C TAN and R V DUBEY. A weighted least-norm solution-based scheme for avoiding joint limits for redundant joint manipulators, IEEE Transactions on Robotics & Automation, 11 (2) (1995) 286-292.
[38] M BENZAOUI, H. CHEKIREB and M. TADJINE. Redundant robot manipulator control with obstacle avoidance using an extended jacobian method, Proc. of 18th Mediterranean Conference on Control & Automation, Marrakech, MAR (2010) 371-376.
[39] M SHIMIZU, H KAKUYA, W K Yoon, K KITAGAKI and K KOSUGE. Analytical inverse kinematic computation for 7-DOF redundant manipulators with joint limits and its application to redundancy resolution, IEEE Transactions on Robotics, 24 (5) (2008) 1131-1142.
[40] R C LUO, T W LIN and Y H TSAI. Analytical inverse kinematic solution for modularized 7-DOF redundant manipulators with offsets at shoulder and wrist, Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA (2014) 516-521.
[41] J K PARKER, A R KHOOGAR and D E GOLDBERG. Inverse kinematics of redundant robots using genetic algorithms, Proc. of IEEE International Conference on Robotics and Automation, Scottsdale, AZ, USA (1989) 271-276.
[42] H C HUANG, C P CHEN, and P R WANG. Particle swarm optimization for solving the inverse kinematics of 7-DOF robotic manipulators, Proc. of IEEE International Conference on Systems, Man, and Cybernetics, Seoul, KOR (2012) 3105-3110.
[43] Z W REN, Z H WANG and L N SUN. A hybrid biogeography-based optimization method for the inverse kinematics problem of an 8-DOF redundant humanoid manipulator, Frontiers of Information Technology & Electronic Engineering, 16 (7) (2015) 607-616.
[44] 李正义.机器人与环境间力/位置控制技术研究与应用[D].华中科技大学,2011.
[45] JINJUN DUAN, YAHUI GAN, MING CHEN, XIANZHONG DAI. Adaptive variable impedance control for dynamic contact force tracking in an uncertain environment[J], Robotics and Autonomous Systems, Volume 102, 2018, Pages 54-65.
[46] KEVIN M, LYNCH, FRANK C P. ROBOTICS MECHANICS, PLANNING, AND CONTROL[M]. Cambridge University Press, 2017.
[47] M. SHIMIZU, H. KAKUYA, W. YOON, K. KITAGAKI, and K. KOSUGE, "Analytical Inverse Kinematic Computation for 7-DOF Redundant Manipulators With Joint Limits and Its Application to Redundancy Resolution, IEEE Transactions on Robotics, vol.24, no.5, pp. 1131- 1142, 2008.
[48] KHALIL W, DUMBER E, MODELING, Identification and Control of Robots[J].2002.
[49] GAUTIER M, KHALIL W. A direct determination of minimum inertial parameters of robots[C]. Proceedings. 1988 IEEE International Conference on Robotics and Automation.2002.
[50] PETERS J, MISTRY M, UDWADIA F, et al. A unifying methodology for the control of robotic systems. In: Proceedings of ICRA, Edmonton, Alberta, Canada, 2 August 2005, pp. 1824–1831.
[51] N HOGAN. Stable execution of contact tasks using impedance control. In: Proceedings of ICRA, Raleigh, NC, USA, 31 March 1987, pp. 1047–1054.
[52] GL XIONG, Y ZHOU, and JK YAO. Null-space impedance control of 7-degree-of-freedom redundant manipulators based on the arm angles[J]. International Journal of Advanced RoboticSystems,2020,17(3):1-14.
[53] 崔超然.基于动力学参数辨识的阻抗控制研究[D].哈尔滨工业大学,2021.
[54] QIN ZHONGKAI, BARON L, BIRGLEN L. A new approach to the dynamic parameter identification of robotic manipulators[J]. Robotica, 2010. 28(4)P539-547.
[55] 肖维荣,齐蓉.装备自动化工程设计与实践[M].北京:机械工业出版社,2021: 46-56.

所在学位评定分委会
机械与能源工程系
国内图书分类号
TP249
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336017
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
段广剑. 基于七轴协作机械臂的刚性材料打磨平台[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032441-段广剑-机械与能源工程(3771KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[段广剑]的文章
百度学术
百度学术中相似的文章
[段广剑]的文章
必应学术
必应学术中相似的文章
[段广剑]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。