中文版 | English
题名

刚柔耦合灵巧夹爪的智能控制

其他题名
INTELLGENT CONTROL OF SOFT-RIGID HYBRID DEXTEROUS GRIPPER
姓名
姓名拼音
ZHU Wen
学号
11930368
学位类型
硕士
学位专业
0809 电子科学与技术
学科门类/专业学位类别
08 工学
导师
王峥
导师单位
机械与能源工程系
论文答辩日期
2022-05-10
论文提交日期
2022-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
软体夹爪因其交互式安全性和灵巧性而受到越来越多的关注。使用刚性约束提升性能的刚柔耦合夹爪是软体夹爪设计的新趋势。通过柔性驱动器驱动刚性连杆,刚柔耦合夹爪可以实现出色的抓取适应性和高抓取负载,同时也可以使用传统刚体运动学进行建模和控制。然而,现有刚柔耦合夹 爪主要集中高载荷和自感知,与传统的夹爪相比,其灵巧性要低得多。这项工作从人类指根关节中汲取灵感,提出了一种由 8 个独立驱动器驱动的新型刚柔耦合夹爪设计。本文同时提出了新型的泵阀一体式驱控系统,在该上使用连续控制器提高气压跟踪精度,相较离散控制器能减少 91.6%的跟踪误差。在结构的基础上进行运动学建模,运动离散点法表示柔性驱动器的形变,并利用旋量法快求解驱动器各点的齐次变换矩阵。结果表明,仿人指根设计的关节对于实现刚柔耦合夹爪中一系列新功能至关重要,能实现包括手内操作、横向被动顺应性以及新的控制模式。本文在专有的具有视觉引导抓取的双臂机器人平台上制造并测试了原型夹爪。借助轻巧的
气动波纹管软体驱动器,夹爪可以抓取超过自身重量 20 倍的物体,并具有侧向柔顺性。使用双臂平台和两个刚柔耦合夹爪,我们还演示了高度拟人化的灵巧操作,从双臂协同抓取刚性杆到使用手内操作在两个夹爪之间折叠、递毛巾。与所提出的刚柔耦合夹爪的一系列特征和性能一起研究的还有基础建模、驱动系统、控制和实验验证细节,为提高机器人夹爪的灵活性、负载和柔顺性提供了一种有潜力的方法。
关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1]SHINTAKE J, CACUCCIOLO V, FLOREANO D, et al. Soft robotic grippers[J]. Advanced Materials, 2018, 30(29): 1707035.
[2]YAMAZAKI K, UEDA R, NOZAWA S, et al. Home-assistant robot for an aging society[J]. Proceedings of the IEEE, 2012, 100(8): 2429-2441.
[3]BULLOCK I M, MA R R, DOLLAR A M. A hand-centric classification of human and robot dexterous manipulation[J]. IEEE Transactions on Haptics, 2012, 6(2): 129-144.
[4]BILLARD A, KRAGIC D. Trends and challenges in robot manipulation[J]. Science, 2019, 364(6446): eaat8414.
[5]MASON M T. Toward robotic manipulation[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1: 1-28.
[6]QIAO S L, LIU R Q, GUO H W, et al. Configuration design of an under-actuated robotic hand based on maximum grasping space[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 1-9.
[7]SONG S, ZHANG W. Grasp analysis and a self-adaptive robotic hand with a novel parallel-coupled switchable mode[C]//2016 International Conference on Advanced Robotics and Mechatronics (ICARM). IEEE, 2016: 530-535.
[8]ZHANG Z, HAN T, PAN J, et al. Design of anthropomorphic fingers with biomimetic actuation mechanism[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3465-3472.
[9]ODHNER L U, JENTOFT L P, CLAFFEE M R, et al. A compliant, underactuated hand for robust manipulation[J]. The International Journal of Robotics Research, 2014, 33(5): 736-752.
[10]DOLLAR A M, HOWE R D. The highly adaptive SDM hand: Design and performance evaluation[J]. The International Journal of Robotics Research, 2010, 29(5): 585-597.
[11]CHEN T, WANG L, HAAS-HEGER M, et al. Underactuation design for tendon-driven hands via optimization of mechanically realizable manifolds in posture and torque spaces[J]. IEEE Transactions on Robotics, 2020, 36(3): 708-723.
[12]ILIEVSKI F, MAZZEO A D, SHEPHERD R F, et al. Soft robotics for chemists[J]. Angewandte Chemie, 2011, 123(8): 1930-1935.
[13]BROWN E, RODENBERG N, AMEND J, et al. Universal robotic gripper based on the jamming of granular material[J]. Proceedings of the National Academy of Sciences, 2010, 107(44): 18809-18814.
[14]BEHL M, KRATZ K, ZOTZMANN J, et al. Reversible bidirectional shape‐memory polymers[J]. Advanced Materials, 2013, 25(32): 4466-4469.
[15]YI J, CHEN X, SONG C, et al. Fiber-reinforced origamic robotic actuator[J]. Soft Robotics, 2018, 5(1): 81-92.
[16]SHE Y, CHEN J, SHI H, et al. Modeling and validation of a novel bending actuator for soft robotics applications[J]. Soft Robotics, 2016, 3(2): 71-81.
[17]LIU S, WANG F, LIU Z, et al. A two-finger soft-robotic gripper with enveloping and pinching grasping modes[J]. IEEE/ASME Transactions on Mechatronics, 2020, 26(1): 146-155.
[18]LI Y, CHEN Y, YANG Y, et al. Soft robotic grippers based on particle transmission[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 969-978.
[19]ZHOU J, CHEN X, LI J, et al. A soft robotic approach to robust and dexterous grasping[C]//2018 IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 2018: 412-417.
[20]DROTMAN D, ISHIDA M, JADHAV S, et al. Application-driven design of soft, 3-D printed, pneumatic actuators with bellows[J]. IEEE/ASME Transactions on Mechatronics, 2018, 24(1): 78-87.
[21]ZHOU J, CHEN Y, CHEN X, et al. A proprioceptive bellows (PB) actuator with position feedback and force estimation[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 1867-1874.
[22]YI J, CHEN X, SONG C, et al. Customizable three-dimensional-printed origami soft robotic joint with effective behavior shaping for safe interactions[J]. IEEE Transactions on Robotics, 2018, 35(1): 114-123.
[23]XIE Z, YUAN F, LIU Z, et al. A proprioceptive soft tentacle gripper based on crosswise stretchable sensors[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(4): 1841-1850.
[24]LIU S, ZHU Y, ZHANG Z, et al. Otariidae-inspired soft-robotic supernumerary flippers by fabric kirigami and origami[J]. IEEE/ASME Transactions on Mechatronics, 2020, 26(5): 2747-2757.
[25]HOLLAND D P, ABAH C, VELASCO-ENRIQUEZ M, et al. The soft robotics toolkit: Strategies for overcoming obstacles to the wide dissemination of soft-robotic hardware[J]. IEEE Robotics & Automation Magazine, 2017, 24(1): 57-64.
[26]LI S, VOGT D M, RUS D, et al. Fluid-driven origami-inspired artificial muscles[J]. Proceedings of the National academy of Sciences, 2017, 114(50): 13132-13137.
[27]ZHANG B, FAN Y, YANG P, et al. Worm-like soft robot for complicated tubular environments[J]. Soft robotics, 2019, 6(3): 399-413.
[28]MARCHESE A D, KOMOROWSKI K, ONAL C D, et al. Design and control of a soft and continuously deformable 2d robotic manipulation system[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE,2014: 2189-2196.
[29]SRIDAR S, PODDAR S, TONG Y, et al. Towards untethered soft pneumatic exosuits using low-volume inflatable actuator composites and a portable pneumatic source[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4062-4069.
[30]ABBASI P, NEKOUI M A, ZAREINEJAD M, et al. Position and force control of a soft pneumatic actuator[J]. Soft Robotics, 2020, 7(5): 550-563.
[31]HOFER M, D'ANDREA R. Design, modeling and control of a soft robotic arm[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 1456-1463.
[32]ZHANG B, CHEN J, MA X, et al. Pneumatic System Capable of Supplying Programmable Pressure States for Soft Robots[J]. Soft Robotics, 2021.
[33]DELLA SANTINA C, DURIEZ C, RUS D. Model based control of soft robots: A survey of the state of the art and open challenges[J]. arXiv preprint arXiv:2110.01358, 2021.
[34]COLEMAN B D, DILL E H, LEMBO M, et al. On the dynamics of rods in the theory of Kirchhoff and Clebsch[J]. Archive for rational mechanics and analysis, 1993, 121(4): 339-359.
[35]SPILLMANN J, TESCHNER M. CORDE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects[C]//Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation. 2007: 63-72.
[36]LANG H, LINN J, ARNOLD M. Multi-body dynamics simulation of geometrically exact Cosserat rods[J]. Multibody System Dynamics, 2011, 25(3): 285-312.
[37]GAZZOLA M, DUDTE L H, MCCORMICK A G, et al. Forward and inverse problems in the mechanics of soft filaments[J]. Royal Society open science, 2018, 5(6): 171628.
[38]WEBSTER III R J, JONES B A. Design and kinematic modeling of constant curvature continuum robots: A review[J]. The International Journal of Robotics Research, 2010, 29(13): 1661-1683.
[39]DELLA SANTINA C, KATZSCHMANN R K, BICCHI A, et al. Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment[J]. The International Journal of Robotics Research, 2020, 39(4): 490-513.
[40]KATZSCHMANN R K, DELLA SANTINA C, TOSHIMITSU Y, et al. Dynamic motion control of multi-segment soft robots using piecewise constant curvature matched with an augmented rigid body model[C]//2019 2nd IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 2019: 454-461.
[41]BERTAILS F. Linear time super‐helices[C]//Computer graphics forum. Oxford, UK: Blackwell Publishing Ltd, 2009, 28(2): 417-426.
[42]BERGOU M, WARDETZKY M, ROBINSON S, et al. Discrete elastic rods[M]//ACM SIGGRAPH 2008 papers. 2008: 1-12.
[43]JIA Y, HOBEROCK J, GARLAND M, et al. On the visualization of social and other scale-free networks[J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(6): 1285-1292.
[44]SADATI S M H, NAGHIBI S E, WALKER I D, et al. Control space reduction and real-time accurate modeling of continuum manipulators using ritz and ritz–galerkin methods[J]. IEEE Robotics and Automation Letters, 2017, 3(1): 328-335.
[45]QUIGLEY M, CONLEY K, GERKEY B, et al. ROS: an open-source Robot Operating System[C]//ICRA workshop on open source software. 2009, 3(3.2): 5.
[46]CHEN J, DENG H, CHAI W, et al. Manipulation task simulation of a soft pneumatic gripper using ros and gazebo[C]//2018 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, 2018: 378-383.
[47]CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986 (6): 679-698.
[48]Microsoft,Corp.Azure Kinect DK Hardware Specifications[EB/OL].
[2020-03].Https://docs.microsoft.com/en-us/azure/Kinect-dk/hardware-specification.
[49]ZHOU J, CHEN S, WANG Z. A soft-robotic gripper with enhanced object adaptation and grasping reliability[J]. IEEE Robotics and Automation Letters, 2017, 2(4): 2287-2293.
[50]LIU C H, CHUNG F M, CHEN Y, et al. Optimal design of a motor-driven three-finger soft robotic gripper[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(4): 1830-1840.

所在学位评定分委会
机械与能源工程系
国内图书分类号
TP241.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336018
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
朱文珮. 刚柔耦合灵巧夹爪的智能控制[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930368-朱文珮-机械与能源工程(6795KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[朱文珮]的文章
百度学术
百度学术中相似的文章
[朱文珮]的文章
必应学术
必应学术中相似的文章
[朱文珮]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。