[1] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[2] LECUN Y, BENGIO Y, et al. Convolutional networks for images, speech, and time series[J]. The Handbook of Brain Theory and Neural Networks, 1995, 3361(10): 1995.
[3] LIN Z, FENG J, LU Z, et al. Deepstn+ context-aware spatial-temporal neural network for crowd flow prediction in metropolis[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019: 1020-1027.
[4] DAI R, XU S, GU Q, et al. Hybrid spatio-temporal graph convolutional network: Improving traffic prediction with navigation data[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020: 3074-3082.
[5] ZHENG Y, CAPRA L, WOLFSON O, et al. Urban computing: concepts, methodologies, and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2014, 5(3): 38.
[6] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [J]. 2017.
[7] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. 2017: 5998-6008.
[8] ZHANG J, ZHENG Y, QI D. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2017: 1655-1661.
[9] WANG D, CAO W, LI J, et al. Deepsd: supply-demand prediction for online car-hailing services using deep neural networks[C]//IEEE International Conference on Data Engineering. 2017: 243-254.
[10] YAO H, WU F, KE J, et al. Deep multi-view spatial-temporal network for taxi demand prediction [C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2018: 2588-2595.
[11] ZONOOZI A, KIM J J, LI X L, et al. Periodic-crn: A convolutional recurrent model for crowd density prediction with recurring periodic patterns[C]//Proceedings of the International Joint Conference on Artificial Intelligence. 2018: 3732-3738.
[12] YUAN Z, ZHOU X, YANG T. Hetero-convlstm: A deep learning approach to traffic accident prediction on heterogeneous spatio-temporal data[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 984-992.
[13] YAO H, TANG X, WEI H, et al. Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019: 5668-5675.
[14] ZHANG J, ZHENG Y, SUN J, et al. Flow prediction in spatio-temporal networks based on multitask deep learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 32(3): 468-478.
[15] JIANG R, SONG X, HUANG D, et al. Deepurbanevent: A system for predicting citywide crowd dynamics at big events[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 2114-2122.
[16] ZHANG Y, LI Y, ZHOU X, et al. Curb-gan: Conditional urban traffic estimation through spatiotemporal generative adversarial networks[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020: 842-852.
[17] YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//Proceedings of the International Joint Conference on Artificial Intelligence. 2018: 3634-3640.
[18] LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[C]//International Conference on Learning Representations. 2018.
[19] CHAI D, WANG L, YANG Q. Bike flow prediction with multi-graph convolutional networks [C]//Proceedings of the ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2018: 397-400.
[20] GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 33. 2019: 922-929.
[21] DIAO Z, WANG X, ZHANG D, et al. Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 33. 2019: 890-897.
[22] GENG X, LI Y, WANG L, et al. Spatiotemporal multi-graph convolution network for ridehailing demand forecasting[C]//Proceedings of the AAAI conference on artificial intelligence: volume 33. 2019: 3656-3663.
[23] WU Z, PAN S, LONG G, et al. Graph wavenet for deep spatial-temporal graph modeling[C]// Proceedings of the International Joint Conference on Artificial Intelligence. 2019: 1907-1913.
[24] BAI L, YAO L, KANHERE S, et al. Stg2seq: Spatial-temporal graph to sequence model for multi-step passenger demand forecasting[C]//Proceedings of the International Joint Conference on Artificial Intelligence. 2019: 1981-1987.
[25] ZHAO L, SONG Y, ZHANG C, et al. T-gcn: A temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9): 3848-3858.
[26] CUI Z, HENRICKSON K, KE R, et al. Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(11): 4883-4894.
[27] YU J J Q, GU J. Real-time traffic speed estimation with graph convolutional generative autoencoder[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10).
[28] ZHENG C, FAN X, WANG C, et al. Gman: A graph multi-attention network for traffic prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 34. 2020: 1234-1241.
[29] CHEN W, CHEN L, XIE Y, et al. Multi-range attentive bicomponent graph convolutional network for traffic forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 34. 2020: 3529-3536.
[30] SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 34. 2020: 914-921.
[31] ZHANG Q, CHANG J, MENG G, et al. Spatio-temporal graph structure learning for traffic forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 34. 2020: 1177-1185.
[32] WANG X, MA Y, WANG Y, et al. Traffic flow prediction via spatial temporal graph neural network[C]//The World Wide Web Conference. 2020: 1082-1092.
[33] BAI L, YAO L, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting [C]//Advances in Neural Information Processing Systems: volume 33. 2020: 17804-17815.
[34] LV M, HONG Z, CHEN L, et al. Temporal multi-graph convolutional network for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020.
[35] GUO K, HU Y, QIAN Z, et al. Dynamic graph convolution network for traffic forecasting based on latent network of laplace matrix estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1009-1018.
[36] LAI G, CHANG W C, YANG Y, et al. Modeling long-and short-term temporal patterns with deep neural networks[C]//The International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018: 95-104.
[37] ZHANG J, SHI X, XIE J, et al. Gaan: Gated attention networks for learning on large and spatiotemporal graphs[C]//The Conference on Uncertainty in Artificial Intelligence. 2018: 339-349.
[38] LIANG Y, KE S, ZHANG J, et al. Geoman: Multi-level attention networks for geo-sensory time series prediction[C]//Proceedings of the International Joint Conference on Artificial Intelligence. 2018: 3428-3434.
[39] PAN Z, LIANG Y, WANG W, et al. Urban traffic prediction from spatio-temporal data using deep meta learning[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 1720-1730.
[40] SHIH S Y, SUN F K, LEE H Y. Temporal pattern attention for multivariate time series forecasting[J]. Machine Learning, 2019, 108(8-9): 1421-1441.
[41] LI S, JIN X, XUAN Y, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[C]//Advances in Neural Information Processing Systems. 2019: 5243-5253.
[42] WU Z, PAN S, LONG G, et al. Connecting the dots: Multivariate time series forecasting with graph neural networks[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020: 753-763.
[43] DENG J, CHEN X, JIANG R, et al. St-norm: Spatial and temporal normalization for multivariate time series forecasting[C]//Proceedings of the ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021: 269-278.
[44] SMITH B, DEMETSKY M. Traffic flow forecasting: Comparison of modeling approaches[J]. Journal of Transportation Engineering, 1997, 123(4).
[45] WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal arima process: Theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129(6): 664-672.
[46] ZIVOT E, WANG J. Vector autoregressive models for multivariate time series[J]. Modeling Financial Time Series with S-Plus®, 2006: 385-429.
[47] ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[J]. ArXiv Preprint ArXiv:1409.2329, 2014.
[48] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[C]//Advances in Neural Information Processing Systems. 2014.
[49] BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. ArXiv Preprint ArXiv:1803.01271, 2018.
[50] LIU Y, ZHENG H, FENG X, et al. Short-term traffic flow prediction with conv-lstm[C]//IEEE International Conference on Wireless Communications and Signal Processing (WCSP). 2017: 1-6.
[51] OORD A V D, DIELEMAN S, ZEN H, et al. Wavenet: A generative model for raw audio[J]. 2016: 125.
[52] ZHOU H, ZHANG S, PENG J, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021: 11106-11115.
[53] LIU Q, WU S, WANG L, et al. Predicting the next location: A recurrent model with spatial and temporal contexts[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2016: 194-200.
[54] HUANG S, WANG D, WU X, et al. Dsanet: Dual self-attention network for multivariate time series forecasting[C]//Proceedings of the ACM International Conference on Information & Knowledge Management. 2019: 2129-2132.
[55] CHENG J, HUANG K, ZHENG Z. Towards better forecasting by fusing near and distant future visions[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020: 3593-3600.
[56] LI Z, HE J, LIU H, et al. Combining global and sequential patterns for multivariate time series forecasting[C]//IEEE International Conference on Big Data. 2020: 180-187.
[57] CHEN P, LIU R, AIHARA K, et al. Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation[J]. Nature Communications, 2020, 11 (1): 1-15.
[58] LIM B, ARIK S Ö, LOEFF N, et al. Temporal fusion transformers for interpretable multihorizon time series forecasting[J]. International Journal of Forecasting, 2021, 37(4): 1748-1764.
[59] ORESHKIN B N, CARPOV D, CHAPADOS N, et al. N-BEATS: neural basis expansion analysis for interpretable time series forecasting[C]//International Conference on Learning Representations. 2020.
[60] ORESHKIN B N, AMINI A, COYLE L, et al. Fc-gaga: Fully connected gated graph architecture for spatio-temporal traffic forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021: 9233-9241.
[61] FARNOOSH A, AZARI B, OSTADABBAS S. Deep switching auto-regressive factorization: Application to time series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021: 7394-7403.
[62] HE H, ZHANG Q, BAI S, et al. Catn: Cross attentive tree-aware network for multivariate time series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2022.
[63] CHEN E, YE Z, WANG C, et al. Subway passenger flow prediction for special events using smart card data[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(3): 1109-1120.
[64] HAO S, LEE D H, ZHAO D. Sequence to sequence learning with attention mechanism for short-term passenger flow prediction in large-scale metro system[J]. Transportation Research Part C: Emerging Technologies, 2019, 107: 287-300.
[65] CHEN C, LI K, TEO S G, et al. Gated residual recurrent graph neural networks for traffic prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019: 485-492.
[66] HE Z, CHOW C Y, ZHANG J D. Stnn: A spatio-temporal neural network for traffic predictions [J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7642-7651.
[67] CUI Z, LIN L, PU Z, et al. Graph markov network for traffic forecasting with missing data[J]. Transportation Research Part C: Emerging Technologies, 2020, 117: 102671.
[68] LU Y J, LI C T. Agstn: Learning attention-adjusted graph spatio-temporal networks for shortterm urban sensor value forecasting[C]//IEEE International Conference on Data Mining. 2020: 1148-1153.
[69] HUANG R, HUANG C, LIU Y, et al. Lsgcn: Long short-term traffic prediction with graph convolutional networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020: 2355-2361.
[70] SHANG C, CHEN J, BI J. Discrete graph structure learning for forecasting multiple time series [C]//International Conference on Learning Representations. 2021.
[71] PARK C, LEE C, BAHNG H, et al. St-grat: A novel spatio-temporal graph attention networks for accurately forecasting dynamically changing road speed[C]//Proceedings of the ACM International Conference on Information & Knowledge Management. 2020: 1215-1224.
[72] ZHANG X, HUANG C, XU Y, et al. Spatial-temporal convolutional graph attention networks for citywide traffic flow forecasting[C]//Proceedings of the ACM International Conference on Information & Knowledge Management. 2020: 1853-1862.
[73] LU B, GAN X, JIN H, et al. Spatiotemporal adaptive gated graph convolution network for urban traffic flow forecasting[C]//Proceedings of the ACM International Conference on Information & Knowledge Management. 2020: 1025-1034.
[74] ZHANG X, HUANG C, XU Y, et al. Traffic flow forecasting with spatial-temporal graph diffusion network[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021: 15008-15015.
[75] CHEN Y, SEGOVIA-DOMINGUEZ I, GEL Y R. Z-gcnets: Time zigzags at graph convolutional networks for time series forecasting[C]//Proceedings of the International Conference on Machine Learning: volume 139. PMLR, 2021: 1684-1694.
[76] FANG Z, LONG Q, SONG G, et al. Spatial-temporal graph ode networks for traffic flow forecasting[C]//Proceedings of the ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021: 364-373.
[77] ZHANG C, ZHANG S, YU J J Q, et al. Fastgnn: A topological information protected federated learning approach for traffic speed forecasting[J]. IEEE Transactions on Industrial Informatics, 2021, 17(12): 8464-8474.
[78] YE J, ZHAO J, YE K, et al. Multi-stgcnet: A graph convolution based spatial-temporal framework for subway passenger flow forecasting[C]//IEEE International Joint Conference on Neural Networks. 2020: 1-8.
[79] Deep learning architecture for short-term passenger flow forecasting in urban rail transit[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, PP(99): 1-11.
[80] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[81] ZHOU Q, GU J, LU X, et al. Modeling heterogeneous relations across multiple modes for potential crowd flow prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021: 4723-4731.
[82] WANG J, ZHANG Y, WEI Y, et al. Metro passenger flow prediction via dynamic hypergraph convolution networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (12): 7891-7903.
[83] ZHANG J, CHEN F, GUO Y, et al. Multi-graph convolutional network for short-term passenger flow forecasting in urban rail transit[J]. IET Intelligent Transport Systems, 2020, 14(10): 1210-1217.
[84] YE J, SUN L, DU B, et al. Coupled layer-wise graph convolution for transportation demand prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021: 4617-4625.
[85] OU J, SUN J, ZHU Y, et al. Stp-trellisnets: Spatial-temporal parallel trellisnets for metro station passenger flow prediction[C]//Proceedings of the ACM International Conference on Information & Knowledge Management. 2020: 1185-1194.
[86] PENG H, WANG H, DU B, et al. Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting[J]. Information Sciences, 2020, 521: 277-290.
[87] WANG Y, LONG M, WANG J, et al. Predrnn: Recurrent neural networks for predictive learning using spatiotemporal lstms[C]//Advances in Neural Information Processing Systems. 2017: 879-888.
[88] MA X, DAI Z, HE Z, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818.
[89] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]// International Conference on Learning Representations. 2018.
[90] HOANG M X, ZHENG Y, SINGH A K. Forecasting citywide crowd flows based on big data[J]. Proceedings of the ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2016.
[91] ZHANG J, ZHENG Y, QI D, et al. Dnn-based prediction model for spatio-temporal data[C]// Proceedings of the ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2016: 92.
[92] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//International Conference on Learning Representations. 2016.
[93] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[94] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances in Neural Information Processing Systems. 2016: 3844-3852.
[95] XINGJIAN S, CHEN Z, WANG H, et al. Convolutional lstm network: A machine learning approach for precipitation nowcasting[C]//Advances in Neural Information Processing Systems. 2015: 802-810.
[96] CHOLLET F. keras[EB/OL]. 2015. https://github.com/fchollet/keras.
[97] ABADI M, AGARWAL A, BARHAM P, et al. TensorFlow: Large-scale machine learning on heterogeneous systems[EB/OL]. 2015. http://tensorflow.org/.
[98] PASZKE A, GROSS S, MASSA F, et al. Pytorch: An imperative style, high-performance deep learning library[M]//WALLACH H, LAROCHELLE H, BEYGELZIMER A, et al. Advances in Neural Information Processing Systems. 2019: 8024-8035.
[99] DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks [C]//Proceedings of the International Conference on Machine Learning. 2017: 933-941.
[100] SHANG S, CHEN L, WEI Z, et al. Trajectory similarity join in spatial networks[J]. Proceedings of the VLDB Endowment, 2017, 10(11): 1178-1189.
修改评论