[1] WANG X, DING Y L, DENG Y P, et al. Ni‐Rich/Co‐Poor Layered Cathode for Automotive Li‐Ion Batteries: Promises and Challenges [J]. Advanced Energy Materials, 2020, 10(12): 1903864.
[2] 胡雨龙,马锦彪.我国抽水蓄能行业前景展望[J].水电站机电技术,2021,44(12):54-56
[3] WHITTINGHAM M S. The Role of Ternary Phases in Cathode Reactions [J]. Journal of The Electrochemical Society, 1976, 123(3): 315-20.
[4] MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry [J]. Nat Commun, 2020, 11(1): 1550.
[5] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries [J]. Journal of The Electrochemical Society, 1997, 144(4): 1188-94.
[6] THACKERAY M M, DAVID W I F, BRUCE P G, et al. Lithium insertion into manganese spinels [J]. Materials Research Bulletin, 1983, 18(4): 461-72.
[7] LIU Z, YU A, LEE J Y. Synthesis and characterization of LiNi1−x−yCoxMnyO2 as the cathode materials of secondary lithium batteries [J]. Journal of Power Sources, 1999, 81-82: 416-9.
[8] PLACKE T, KLOEPSCH R, DüHNEN S, et al. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density [J]. Journal of Solid State Electrochemistry, 2017, 21(7): 1939-64.
[9] MIZUSHIMA K, JONES P C, WISEMAN P J, et al. LixCoO2 (0[10] LEE W, MUHAMMAD S, SERGEY C, et al. Advances in the Cathode Materials for Lithium Rechargeable Batteries [J]. Angew Chem Int Ed Engl, 2020, 59(7): 2578-605.
[11] CHEBIAM R V, KANNAN A M, PRADO F, et al. Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries [J]. Electrochemistry Communications, 2001, 3(11): 624-7.
[12] DUTTA G, MANTHIRAM A, GOODENOUGH J B, et al. Chemical synthesis and properties of Li1-δ-x Nii1+δO2 and Li[Ni2]O4 [J]. Journal of Solid State Chemistry, 1992, 96(1): 123-31.
[13] KIM T, SONG W, SON D-Y, et al. Lithium-ion batteries: outlook on present, future, and hybridized technologies [J]. Journal of Materials Chemistry A, 2019, 7(7): 2942-64.
[14] THACKERAY M M, DAVID W I F, GOODENOUGH J B. Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0[15] THACKERAY M M. Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries [J]. Journal of The Electrochemical Society, 1995, 142(8): 2558-63.
[16] CHOI W, MANTHIRAM A. Comparison of Metal Ion Dissolutions from Lithium Ion Battery Cathodes [J]. Journal of The Electrochemical Society, 2006, 153(9): A1760.
[17] YOON C S, RYU H-H, PARK G-T, et al. Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batteries [J]. Journal of Materials Chemistry A, 2018, 6(9): 4126-32.
[18] POUILLERIE C, CROGUENNEC L, BIENSAN P, et al. Synthesis and Characterization of New LiNi[sub 1−y]Mg[sub y]O[sub 2] Positive Electrode Materials for Lithium-Ion Batteries [J]. Journal of The Electrochemical Society, 2000, 147(6): 2061.
[19] DELMAS C, PéRèS J P, ROUGIER A, et al. On the behavior of the LixNiO2 system: an electrochemical and structural overview [J]. Journal of Power Sources, 1997, 68(1): 120-5.
[20] SUN Y-K, LEE D-J, LEE Y J, et al. Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries [J]. ACS Applied Materials & Interfaces, 2013, 5(21): 11434-40.
[21] NOBILI F, CROCE F, SCROSATI B, et al. Electronic and Electrochemical Properties of LixNi1-yCoyO2 Cathodes Studied by Impedance Spectroscopy [J]. Chemistry of Materials, 2001, 13(5): 1642-6.
[22] CHO J, JUNG H, PARK Y, et al. Electrochemical Properties and Thermal Stability of Li[sub a]Ni[sub 1−x]Co[sub x]O[sub 2] Cathode Materials [J]. Journal of The Electrochemical Society, 2000, 147(1): 15.
[23] GUILMARD M, ROUGIER A, GRüNE M, et al. Effects of aluminum on the structural and electrochemical properties of LiNiO2 [J]. Journal of Power Sources, 2003, 115(2): 305-14.
[24] GUILMARD M, CROGUENNEC L, DENUX D, et al. Thermal Stability of Lithium Nickel Oxide Derivatives. Part I: LixNi1.02O2 and LixNi0.89Al0.16O2 (x = 0.50 and 0.30) [J]. Chemistry of Materials, 2003, 15(23): 4476-83.
[25] LEE W, MUHAMMAD S, KIM T, et al. New Insight into Ni-Rich Layered Structure for Next-Generation Li Rechargeable Batteries [J]. Advanced Energy Materials, 2018, 8(4): 1701788.
[26] WU F, TIAN J, SU Y, et al. Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials [J]. ACS Appl Mater Interfaces, 2015, 7(14): 7702-8.
[27] NOH H-J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries [J]. Journal of Power Sources, 2013, 233: 121-30.
[28] MARTHA S K, MARKEVICH E, BURGEL V, et al. A short review on surface chemical aspects of Li batteries: A key for a good performance [J]. Journal of Power Sources, 2009, 189(1): 288-96.
[29] KIM J-H, PARK K-J, KIM S J, et al. A method of increasing the energy density of layered Ni-rich Li[Ni1−2xCoxMnx]O2 cathodes (x = 0.05, 0.1, 0.2) [J]. Journal of Materials Chemistry A, 2019, 7(6): 2694-701.
[30] OH P, KO M, MYEONG S, et al. A Novel Surface Treatment Method and New Insight into Discharge Voltage Deterioration for High-Performance 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 Cathode Materials [J]. Advanced Energy Materials, 2014, 4(16): 1400631.
[31] WISE A M, BAN C, WEKER J N, et al. Effect of Al2O3 Coating on Stabilizing LiNi0.4Mn0.4Co0.2O2 Cathodes [J]. Chemistry of Materials, 2015, 27(17): 6146-54.
[32] MYUNG S-T, IZUMI K, KOMABA S, et al. Role of Alumina Coating on Li−Ni−Co−Mn−O Particles as Positive Electrode Material for Lithium-Ion Batteries [J]. Chemistry of Materials, 2005, 17(14): 3695-704.
[33] SUN Y-K, MYUNG S-T, KIM M-H, et al. Synthesis and Characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the Microscale Core−Shell Structure as the Positive Electrode Material for Lithium Batteries [J]. Journal of the American Chemical Society, 2005, 127(38): 13411-8.
[34] SUN Y-K, MYUNG S-T, PARK B-C, et al. High-energy cathode material for long-life and safe lithium batteries [J]. Nature Materials, 2009, 8(4): 320-4.
[35] SUN Y-K, CHEN Z, NOH H-J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries [J]. Nature Materials, 2012, 11(11): 942-7.
[36] YOON C S, PARK K-J, KIM U-H, et al. High-Energy Ni-Rich Li[NixCoyMn1–x–y]O2 Cathodes via Compositional Partitioning for Next-Generation Electric Vehicles [J]. Chemistry of Materials, 2017, 29(24): 10436-45.
[37] KIM U-H, KUO L-Y, KAGHAZCHI P, et al. Quaternary Layered Ni-Rich NCMA Cathode for Lithium-Ion Batteries [J]. ACS Energy Letters, 2019, 4(2): 576-82.
[38] PARK G-T, RYU H-H, PARK N-Y, et al. Tungsten doping for stabilization of Li[Ni0.90Co0.05Mn0.05]O2 cathode for Li-ion battery at high voltage [J]. Journal of Power Sources, 2019, 442: 227242.
[39] LANGDON J, MANTHIRAM A. A perspective on single-crystal layered oxide cathodes for lithium-ion batteries [J]. Energy Storage Materials, 2021, 37: 143-60.
[40] LI F, KONG L, SUN Y, et al. Micron-sized monocrystalline LiNi1/3Co1/3Mn1/3O2 as high-volumetric-energy-density cathode for lithium-ion batteries [J]. Journal of Materials Chemistry A, 2018, 6(26): 12344-52.
[41] HARLOW J E, MA X, LI J, et al. A Wide Range of Testing Results on an Excellent Lithium-Ion Cell Chemistry to be used as Benchmarks for New Battery Technologies [J]. Journal of The Electrochemical Society, 2019, 166(13): A3031-A44.
[42] TREVISANELLO E, RUESS R, CONFORTO G, et al. Polycrystalline and Single Crystalline NCM Cathode Materials—Quantifying Particle Cracking, Active Surface Area, and Lithium Diffusion [J]. Advanced Energy Materials, 2021, 11(18): 2003400.
[43] LEE S-W, KIM H, KIM M-S, et al. Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries [J]. Journal of Power Sources, 2016, 315: 261-8.
[44] LIANG L, DU K, PENG Z, et al. Co–precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries [J]. Electrochimica Acta, 2014, 130: 82-9.
[45] WANG L, WU B, MU D, et al. Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries [J]. Journal of Alloys and Compounds, 2016, 674: 360-7.
[46] YUE P, WANG Z, GUO H, et al. Effect of synthesis routes on the electrochemical performance of Li[Ni0.6Co0.2Mn0.2]O2 for lithium ion batteries [J]. Journal of Solid State Electrochemistry, 2012, 16(12): 3849-54.
[47] KONG J-Z, ZHOU F, WANG C-B, et al. Effects of Li source and calcination temperature on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 lithium-ion cathode materials [J]. Journal of Alloys and Compounds, 2013, 554: 221-6.
[48] WU K, WANG F, GAO L, et al. Effect of precursor and synthesis temperature on the structural and electrochemical properties of Li(Ni0.5Co0.2Mn0.3)O2 [J]. Electrochimica Acta, 2012, 75: 393-8.
[49] LI XQ, XIONG XH, WANG ZX, et al. Effect of sintering temperature on cycling performance and rate performance of LiNi0.8Co0.1Mn0.1O2 [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 4023-9.
[50] BI Y, YANG W, DU R, et al. Correlation of oxygen non-stoichiometry to the instabilities and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 utilized in lithium ion battery [J]. Journal of Power Sources, 2015, 283: 211-8.
[51] CHEN H, DAWSON J A, HARDING J H. Effects of cationic substitution on structural defects in layered cathode materials LiNiO2 [J]. Journal of Materials Chemistry A, 2014, 2(21).
[52] YANG W, LIU X, QIAO R, et al. Key electronic states in lithium battery materials probed by soft X-ray spectroscopy [J]. Journal of Electron Spectroscopy and Related Phenomena, 2013, 190: 64-74.
[53] QIAO R, LIU J, KOURTAKIS K, et al. Transition-metal redox evolution in LiNi0.5Mn0.3Co0.2O2 electrodes at high potentials [J]. Journal of Power Sources, 2017, 360: 294-300.
[54] WANG C, WANG R, HUANG Z, et al. Unveiling the migration behavior of lithium ions in NCM/Graphite full cell via in operando neutron diffraction [J]. Energy Storage Materials, 2022, 44: 1-9.
[55] LIU H, CHEN Y, HY S, et al. Operando Lithium Dynamics in the Li-Rich Layered Oxide Cathode Material via Neutron Diffraction [J]. Advanced Energy Materials, 2016, 6(7): 1502143.
[56] SONG S H, CHO M, PARK I, et al. High‐Voltage‐Driven Surface Structuring and Electrochemical Stabilization of Ni‐Rich Layered Cathode Materials for Li Rechargeable Batteries [J]. Advanced Energy Materials, 2020, 10(23): 2000521.
[57] GENG L, LIU J, WOOD D L, et al. Probing Thermal Stability of Li-Ion Battery Ni-Rich Layered Oxide Cathodes by means of Operando Gas Analysis and Neutron Diffraction [J]. ACS Applied Energy Materials, 2020, 3(7): 7058-65.
[58] 张昌盛,彭梅,孙光爱.中子散射:理解工程材料的必要工具[J].物理,2015,44(03):169-178.
[59] YOON W S, HAAS O, MUHAMMAD S, et al. In situ soft XAS study on nickel-based layered cathode material at elevated temperatures: a novel approach to study thermal stability [J]. Sci Rep, 2014, 4: 6827.
[60] RAVEL B, NEWVILLE M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT [J]. Journal of Synchrotron Radiation, 2005, 12(4): 537-41.
[61] HOU X, OHTA K, KIMURA Y, et al. Lattice Oxygen Instability in Oxide‐Based Intercalation Cathodes: A Case Study of Layered LiNi1/3Co1/3Mn1/3O2 [J]. Advanced Energy Materials, 2021, 11(30): 2101005.
修改评论