[1]ZIMMERMANN J F, MOSCOVITCH M, ALAIN C. Long-term memory biases auditory spatial attention[J]. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2017, 43(10): 1602.
[2]ZHOU Z, CHEOK A D, YANG X, et al. An experimental study on the role of 3D sound in augmented reality environment[J]. Interacting with Computers, 2004, 16(6): 1043-1068.
[3]PULKKI V, HIRVONEN T. Localization of virtual sources in multichannel audio reproduction[J]. Speech and Audio Processing, IEEE Transactions on, 2005, 13(1): 105-119.
[4]LEWKOWICZ R, STRÓŻAK P, BAŁAJ B, et al. Auditory verbal working memory load effects on a simulator-induced spatial disorientation event[J]. Aerospace Medicine and Human Performance, 2019, 90(6): 531-539.
[5]YANG J, SASIKUMAR P, BAI H, et al. The effects of spatial auditory and visual cues on mixed reality remote collaboration[J]. Journal on Multimodal User Interfaces, 2020, 14(4): 337-352.
[6]OKUNO H G, NAKADAI K, LOURENS T, et al. Sound and visual tracking for humanoid robot[J]. Applied Intelligence, 2004, 20(3): 253-266.
[7]CHOI Y C, KIM Y H. Near field impulsive source localization in a noisy environment[J]. Journal of Sound and Vibration, 2007, 303(1): 209-220.
[8]VAN DE BOGAERT T, WOUTERS J, KLASEN T J, et al. Distortion of interaural time cues by directional noise reduction systems in modern digital hearing aids[C]//Applications of Signal Processing to Audio and Acoustics, 2005. IEEE Workshop on. IEEE, 2005: 57-60.
[9]HU H, EWERT S D, MCALPINE D, et al. Differences in the temporal course of interaural time difference sensitivity between acoustic and electric hearing in amplitude modulated stimuli[J]. The Journal of the Acoustical Society of America, 2017, 141(3): 1862-1873.
[10]PANNIELLO M, KING A J, DAHMEN J C, et al. Local and global spatial organization of interaural level difference and frequency preferences in auditory cortex[J]. Cerebral Cortex, 2018, 28(1): 350-369.
[11]MILLS A W. On the minimum audible angle[J]. The Journal of the Acoustical Society of America, 1958, 30(4): 237-246.
[12]YU G, WU R, LIU Y, et al. Near-field head-related transfer-function measurement and database of human subjects[J]. The Journal of the Acoustical Society of America, 2018, 143(3): EL194-EL198.
[13]BRINKMANN F, LINDAU A, WEINZIERL S, et al. A high resolution and full-spherical head-related transfer function database for different head-above-torso orientations[J]. Journal of the Audio Engineering Society, 2017, 65(10): 841-848.
[14]RICHTER J G, FELS J. On the influence of continuous subject rotation during high-resolution head-related transfer function measurements[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(4): 730-741.
[15]SINGH R P, JAVAID M, KATARIA R, et al. Significant applications of virtual reality for COVID-19 pandemic[J]. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2020, 14(4): 661-664.
[16]FARSHID M, PASCHEN J, ERIKSSON T, et al. Go boldly!: Explore augmented reality (AR), virtual reality (VR), and mixed reality (MR) for business[J]. Business Horizons, 2018, 61(5): 657-663.
[17]WIKMAN P, SAHARI E, SALMELA V, et al. Breaking down the cocktail party: Attentional modulation of cerebral audiovisual speech processing[J]. Neuroimage, 2021, 224: 117365.
[18]BLAUERT J. Spatial hearing: the psychophysics of human sound localization[M]. MIT Press, 1997.
[19]RASPAUD M, VISTE H. Binaural source localization by joint estimation of ILD and ITD[J]. IEEE Transactions on Audio Speech & Language Processing, 2009, 18(1): 68-77.
[20]JIANG J, XIE B, MAI H, et al. The role of dynamic cue in auditory vertical localisation[J]. Applied Acoustics, 2019, 146: 398-408.
[21]NÄÄTÄNEN R, PAAVILAINEN P, RINNE T, et al. The mismatch negativity (MMN) in basic research of central auditory processing: a review[J]. Clinical Neurophysiology, 2007, 118(12): 2544-2590.
[22]ZHANG L I, BAO S, MERZENICH M M. Disruption of primary auditory cortex by synchronous auditory inputs during a critical period[J]. Proceedings of the National Academy of Sciences, 2002, 99(4): 2309-2314.
[23]LEE Y, PARK Y, PARK Y. Newly designed HRTF measuring system[C]//2009 ICCAS-SICE. IEEE, 2009: 1781-1784.
[24]WEN ZHANG, MENGQIU ZHANG, RODNEY A. KENNEDY, el al. On High-Resolution Head-Related Transfer Function Measurements: An Efficient Sampling Scheme[J]. Audio, Speech, and Language Processing. 2012, 20(2): 575-584.
[25]HONDA A, SHIBATA H, GYOBA J, et al. Transfer effects on sound localization performances from playing a virtual three - dimensional auditory game [J]. Applied Acoustics, 2007, 68(8): 885- 896.
[26]BILL G. Hrtf measurements of a KEMAR dummy-head microphone[J]. MIT Media Lab. Perceptual Computing-Technical Report, 1994, 280: 1-7.
[27]ALGAZI V R, DUDA R O, THOMPSON D M, et al. The cipic hrtf database[C]// Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat. No. 01TH8575). IEEE, 2001: 99-102.
[28]http://www.ircam.fr/equipes/salles/listen/index.html
[29]CHRISTENSEN F, JENSEN C B, MØLLER H. The design of VALDEMAR-an artificial head for binaural recording purposes[C]//Audio Engineering Society Convention 109. Audio Engineering Society, 2000.
[30]DEOUELL L Y, BENTIN S, SOROKER N. Electrophysiological evidence for an early (pre-attentive) information processing deficit in patients with right hemisphere damage and unilateral neglect[J]. Brain, 2000, 123(2): 353-365.
[31]DEOUELL L Y, HELLER A S, MALACH R, et al. Cerebral responses to change in spatial location of unattended sounds[J]. Neuron, 2007, 55(6): 985-996.
[32]GILKEY R H, GOOD M D, ERICSON M A, et al. A pointing technique for rapidly collecting localization responses in auditory research[J]. Behavior Research Methods, Instruments, & Computers, 1995, 27(1): 1-11.
[33]FREIGANG C, SCHMIEDCHEN K, NITSCHE I, et al. Free-field study on auditory localization and discrimination performance in older adults[J]. Experimental Brain Research, 2014, 232(4): 1157-1172.
[34]AGGIUS-VELLA E, KOLARIK A J, GORI M, et al. Comparison of auditory spatial bisection and minimum audible angle in front, lateral, and back space[J]. Scientific Reports, 2020, 10(1): 1-9.
[35]温晓慧,王宁宇,张娟.水平方位声源位置改变诱发健康青年人失匹配负波研究[J]. 听力学及言语疾病杂志,2015,23(4):338-342.
[36]谢菠荪,钟小丽,饶丹,等.头相关传输函数数据库及其特性分析[J].中国科学: G 辑,2006,36(5):464-479.
[37]王超, 胡剑凌. 基于 HRTF 的虚拟三维空间环绕声耳机重放[J]. 信息技术, 2009 (1): 39-41.
[38]吴杰,田霄海.基于中国人工头模的 HRTF 数据库设计与实现[J].計算機與現代化, 2011, 2011(12): 92-96.
[39]FENG WU, GAO XIA, LI ZHI-HONG, et al. Devising and initial realization of testing hearing system for sound location[J]. J Fourth Military Med Uni, 2001, 22(7):656-658.
[40]俞胜锋. 基于脑电的双耳听觉定位的初步研究[D]. 广州:华南理工大学,2019.
[41]HAN Y, CHEN F. Minimum audible movement angle in virtual auditory environment: effect of stimulus frequency[C]//2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE, 2019: 175-178.
[42]ZHANG C Y, XIE B S. Platform for dynamic virtual auditory environment real-time rendering system[J]. Chinese Science Bulletin, 2013, 58(3): 316–327.
[43]SALADIN K S. Human anatomy[M]. Rex Bookstore, Inc., 2005.
[44]VON BARTHELD C S, BAHNEY J, HERCULANO‐HOUZEL S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting[J]. Journal of Comparative Neurology, 2016, 524(18): 3865-3895.
[45]HENRY J C. Electroencephalography: basic principles, clinical applications, and related fields[J]. Neurology, 2006, 67(11): 2092-2092-a.
[46]GRAY H. Anatomy of the human body[M]. Lea & Febiger, 1878.
[47]HAAS L F. Hans berger (1873–1941), richard caton (1842–1926), and electroencephalography[J]. Journal of Neurology, Neurosurgery & Psychiatry, 2003, 74(1): 9-9.
[48]SAKHAVI S. Application of deep learning methods in brain-computer interface systems[D]. National University of Singapore (Singapore), 2017.
[49]WALTER W, COOPER R, ALDRIDGE V J, et al. Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain[J]. nature, 1964, 203(4943): 380-384.
[50]Event-related potentials: A methods handbook[M]. MIT press, 2005.
[51]HINOJOSA J A, Martı́n-Loeches M, Rubia F J. Event-related potentials and semantics: An overview and an integrative proposal[J]. Brain and Language, 2001, 78(1): 128-139.
[52]LUCK S J. An introduction to the event-related potential technique[M]. MIT Press, 2014.
[53]MUSIEK F E, CHERMAK G D, WEIHING J. Auditory training[M]. Plural Publishing Inc., 2014.
[54]SANJU H K, KUMAR P. Enhanced auditory evoked potentials in musicians: A review of recent findings[J]. Journal of Otology, 2016, 11(2): 63-72.
[55]SUTTON S, BRAREN M, ZUBIN J, et al. Evoked-potential correlates of stimulus uncertainty[J]. Science, 1965, 150(3700): 1187-1188.
[56]YAGI Y, COBURN K L, ESTES K M, et al. Effects of aerobic exercise and gender on visual and auditory P300, reaction time, and accuracy[J]. European journal of applied physiology and occupational physiology, 1999, 80(5): 402-408.
[57]POLICH J. Updating P300: an integrative theory of P3a and P3b[J]. Clinical neurophysiology, 2007, 118(10): 2128-2148.
[58]Detection of change: event-related potential and fMRI findings[M]. Norwell, MA:: Kluwer Academic Publishers, 2003.
[59]NIJBOER F, SELLERS E W, MELLINGER J, et al. A P300-based brain–computer interface for people with amyotrophic lateral sclerosis[J]. Clinical neurophysiology, 2008, 119(8): 1909-1916.
[60]FARWELL L A, DONCHIN E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials[J]. Electroencephalography and clinical Neurophysiology, 1988, 70(6): 510-523.
[61]HANSENNE M. Le potentiel évoqué cognitif P300 (II): variabilité interindividuelle et application clinique en psychopathologie[J]. Neurophysiologie Clinique/Clinical Neurophysiology, 2000, 30(4): 211-231.
[62]Li J, Pu J, Cui H, et al. An online P300 brain–computer interface based on tactile selective attention of somatosensory electrical stimulation[J]. Journal of Medical and Biological Engineering, 2019, 39(5): 732-738.
[63]FOLSTEIN J R, VAN PETTEN C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review[J]. Psychophysiology, 2008, 45(1): 152-170.
[64]KUTAS M, HILLYARD S A. Reading senseless sentences: Brain potentials reflect semantic incongruity[J]. Science, 1980, 207(4427): 203-205.
[65]RUGG M D, CURRAN T. Event-related potentials and recognition memory[J]. Trends in Cognitive Sciences, 2007, 11(6): 251-257.
[66]NÄÄTÄNEN R, GAILLARD A W K, MÄNTYSALO S. Early selective-attention effect on evoked potential reinterpreted[J]. Acta Psychologica, 1978, 42(4): 313-329.
[67]NAGAI T, TADA M, KIRIHARA K, et al. Mismatch negativity as a “translatable” brain marker toward early intervention for psychosis: a review[J]. Frontiers in Psychiatry, 2013, 4: 115.
[68]NÄÄTÄNEN R, SHIGA T, ASANO S, et al. Mismatch negativity (MMN) deficiency: a break-through biomarker in predicting psychosis onset[J]. International Journal of Psychophysiology, 2015, 95(3): 338-344.
[69]VAITULEVICH S F, SHESTOPALOVA L B. Interhemisphere asymmetry of auditory evoked potentials in humans and mismatch negativity during sound source localization[J]. Neuroscience and Behavioral Physiology, 2010, 40(6): 629-638.
[70]PHILLIPS H N, BLENKMANN A, HUGHES L E, et al. Convergent evidence for hierarchical prediction networks from human electrocorticography and magnetoencephalography[J]. Cortex, 2016, 82: 192-205.
[71]TADA M, KIRIHARA K, MIZUTANI S, et al. Mismatch negativity (MMN) as a tool for translational investigations into early psychosis: a review[J]. International Journal of Psychophysiology, 2019, 145: 5-14.
[72]LUCK S J. An introduction to the event-related potential technique[M]. MIT Press, 2014.
[73]CALDENHOVE S, BORGHANS L, BLOKLAND A, et al. Role of acetylcholine and serotonin in novelty processing using an oddball paradigm[J]. Behavioural Brain Research, 2017, 331: 199-204.
[74]GILKEY R, ANDERSON T R. Binaural and spatial hearing in real and virtual environments[M]. Psychology Press, 2014.
[75]KOHLRAUSCH A, BRAASCH J, KOLOSSA D, et al. An introduction to binaural processing[C]//The technology of binaural listening. Springer, Berlin, Heidelberg, 2013: 1-32.
[76]BLAUERT J, BRAASCH J. Modeling binaural processing: What next?[C]// Proceedings of Meetings on Acoustics 164ASA. Acoustical Society of America, 2012,18(1): 015005.
[77]NODAL F R, BAJO V M, KING A J. Plasticity of spatial hearing: behavioural effects of cortical inactivation[J]. The Journal of physiology, 2012, 590(16): 3965-3986.
[78]谢菠荪,孟庆林.听觉障碍患者的空间听觉[J].应用声学,2018,5.
[79]PARISE C V, KNORRE K, ERNST M O. Natural auditory scene statistics shapes human spatial hearing[J]. Proceedings of the National Academy of Sciences, 2014, 111(16): 6104-6108.
[80]XIE B. Head-related transfer function and virtual auditory display[M]. J. Ross Publishing, 2013.
[81]罗万伯. 现代多媒体技术应用教程[J]. 2004.
[82]WALL J. Post-cochlear auditory modelling for sound localisation using bio-inspired techniques[D]. University of Ulster, 2010.
[83]FEDDERSEN W E, SANDEL T T, TEAS D C, et al. Localization of high‐frequency tones[J]. the Journal of the Acoustical Society of America, 1957, 29(9): 988-991.
[84]IIDA K. HRTF and sound localization in the horizontal plane[C]//Head-Related Transfer Function and Acoustic Virtual Reality. Springer, Singapore, 2019: 15-24.
[85]JIN C, CORDEROY A, CARLILE S, et al. Spectral cues in human sound localization[J]. Advances in Neural Information Processing Systems, 1999, 12.
[86]WIGHTMAN F L, KISTLER D J. Headphone simulation of free‐field listening. II: Psychophysical validation[J]. The Journal of the Acoustical Society of America, 1989, 85(2): 868-878.
[87]MØLLER H, HAMMERSHØI D, JENSEN C B, et al. Transfer characteristics of headphones measured on human ears[J]. Journal of the Audio Engineering Society, 1995, 43(4): 203-217.
[88]MORIMOTO M, ANDO Y. On the simulation of sound localization[J]. Journal of the Acoustical Society of Japan (e), 1980, 1(3): 167-174.
[89]PERROTT D R, SABERI K. Minimum audible angle thresholds for sources varying in both elevation and azimuth[J]. The Journal of the Acoustical Society of America, 1990, 87(4): 1728-1731.
[90]LITOVSKY R Y. Developmental changes in the precedence effect: estimates of minimum audible angle[J]. The Journal of the Acoustical Society of America, 1997, 102(3): 1739-1745.
[91]KOISTINEN S, RINNE T, CEDERSTRÖM S, et al. Effects of significance of auditory location changes on event related brain potentials and pitch discrimination performance[J]. Brain Research, 2012, 1427: 44-53.
[92]COLIN C, RADEAU M, SOQUET A, et al. Electrophysiology of spatial scene analysis: the mismatch negativity (MMN) is sensitive to the ventriloquism illusion[J]. Clinical Neurophysiology, 2002, 113(4): 507-518.
[93]RÖTTGER S, SCHRÖGER E, GRUBE M, et al. Mismatch negativity on the cone of confusion[J]. Neuroscience Letters, 2007, 414(2): 178-182.
[94]SHINN-CUNNINGHAM B G, SANTARELLI S, KOPCO N. Tori of confusion: Binaural localization cues for sources within reach of a listener[J]. The Journal of the Acoustical Society of America, 2000, 107(3): 1627-1636.
[95]RÖTTGER S, SCHRÖGER E, GRUBE M, et al. Mismatch negativity on the cone of confusion[J]. Neuroscience Letters, 2007, 414(2): 178-182.
[96]ZHAO G, ZHANG Y, GE Y. Frontal EEG asymmetry and middle line power difference in discrete emotions[J]. Frontiers in Behavioral Neuroscience, 2018: 225.
[97]AMENEDO E, ESCERA C. The accuracy of sound duration representation in the human brain determines the accuracy of behavioural perception[J]. European Journal of Neuroscience, 2000, 12(7): 2570-2574.
[98]NÄÄTÄNEN R, SCHRÖGER E, KARAKAS S, et al. Development of a memory trace for a complex sound in the human brain[J]. Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience, 1993.
修改评论