中文版 | English
题名

稀土纳米系统的相干特性及其在量子技术中的应用研究

其他题名
COHERENCE PROPERTIES OF RARE EARTH DOPED NONOSYSTEM AND APPLICATIONS IN QUANTUM TECHNOLOGY
姓名
姓名拼音
HU Zhaogao
学号
11930025
学位类型
硕士
学位专业
070203 原子与分子物理
学科门类/专业学位类别
07 理学
导师
谭电
导师单位
量子科学与工程研究院
外机构导师单位
南方科技大学
论文答辩日期
2022-05-11
论文提交日期
2022-06-20
学位授予单位
南方科技大学
学位授予地点
广东省深圳市
摘要

量子信息技术作为国家战略科技力量之一,是当今国际世界普遍重视和高度竞争的焦点领域。要解决量子信号的产生、处理、传输、同步和存储等一系列问题,对量子材料的性能提出了非常严格的要求。稀土离子(Rare earth ions, RE3+)掺杂晶体材料由于具有稳定的固态物性和出色的光学性质,在量子信息存储、量子频率转换、确定性量子单光子源以及量子调控等方向有着巨大的应用前景。为了满足未来高度集成的混合量子系统和微型化量子设备的苛刻要求,开发高性能RE3+纳米晶体材料,并在其基础上进行量子态的精密探测与操控,已成为当前RE3+量子晶体研发的前沿和热点问题。

本论文以Eu3+:Y2O3纳米量子晶体为研究对象,致力于其湿化学法制备、相干特性及其在量子技术中的应用研究。采用自下而上的均相沉淀化学合成路线,通过优化制备工艺,即调节沉淀剂碳酰胺(尿素,CO(NH2)2)的浓度、反应容器、沉淀反应时长、反应温度等参数,制备出不同粒径系列的Eu3+:Y(OH)CO3·3/2H2OEu3+:YOC碳酸盐沉淀前驱体。随后,采用高温煅烧工艺使该前驱体氧化分解,获得相应的系列Eu3+:Y2O3纳米粉体。通过优化高温煅烧等后处理机制,即后处理的气氛、时间、温度、次数和升降温速率等参数,研究了Eu3+:Y2O3纳米粉体的粒径、初始晶粒尺寸、氧缺陷、分散性和均匀性等性能受制备参数的影响规律,为进一步获得高结晶质量的单分散Eu3+:Y2O3纳米粉体提供依据。

Eu3+:Y2O3纳米粉体的量子相干性能研究方面,设计并完善了纳米粉体的样品架构造,搭建了合适的实验光路和实验设备,解决了强散射Eu3+:Y2O3纳米粉体在极低温稀释制冷机中的微弱光学探测问题。通过对制备的系列Eu3+:Y2O3纳米粉体进行非均匀线宽和荧光寿命表征测试,分析了Eu3+:Y2O3的制备工艺-微观结构-相干性能之间的构效关系。

其他摘要

As one of the national strategic scientific and technological forces, quantum information technology is the focus of international attention and highly competitive field. In order to solve a series of problems of quantum signal generation, processing, transmission, synchronization and storage, the performance of quantum materials is very strict requirements. Rare Earth ions (RE3+) doped crystal materials have great application prospects in quantum information storage, quantum frequency conversion, deterministic quantum single photon source and quantum control due to their stable solid properties and excellent optical properties. In order to meet the demanding requirements of highly integrated hybrid quantum systems and miniaturized quantum devices in the future, the development of high-performance RE3+ nanocrystal materials and the precise detection and manipulation of quantum states based on them have become the forefront and attractive issues in the research and development of rare earth nano-systems.

In this thesis, Eu3+:Y2O3 nano quantum crystal is taken as the research object, and its wet-chemical preparation, coherence properties and applications in quantum technology are studied. Using bottom-up homogeneous precipitation chemical synthesis route, by optimizing the preparation process, that is, adjusting the concentration of precipitant carbamide (urea, CO(NH2)2), reaction vessel, precipitation reaction time, reaction temperature and other parameters, A series of Eu3+:Y(OH)CO3·3/2H2O (Eu3+:YOC) carbonate precipitation precursors with different particle sizes were prepared. Subsequently, the precursor was oxidized and decomposed by high temperature calcination process to obtain the corresponding series of Eu3+:Y2O3 nano-powders. By optimizing the post-treatment mechanism of high-temperature calcination, namely, the parameters of post-treatment such as atmosphere, time, temperature, times and temperature rise and drop rate, the influence of preparation parameters on the particle size, initial grain size, oxygen defect, dispersity and uniformity of Eu3+:Y2O3 nano-powder was studied. It provides a basis for further obtaining monodisperse Eu3+:Y2O3 nano-powder with high crystallization quality.

In the study of the quantum coherence properties of Eu3+:Y2O3 nano-powder, the sample frame structure of nano-powder was designed and improved, and the appropriate experimental optical path and equipment were set up, which solved the weak optical detection problem of strongly scattered Eu3+:Y2O3 nano-powder in the ultra-low temperature dilution refrigerator. A series of Eu3+:Y2O3 nano-powders were prepared by non-uniform linear width and fluorescence lifetime characterization tests, and the structure-activity relationship between the preparation process, microstructure and coherence properties of Eu3+:Y2O3 nano-powders was analyzed.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] Philippe Goldner, Alban Ferrier, et al., Rare Earth-Doped Crystals for Quantum Information Processing, 2015, pp. 1-78.
[2] D Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proceedings of the Royal Society of London, DOI 10.1098/rspa.1985.0070(1985).
[3] Charles H. Bennett, Gilles Brassard, Quantum cryptography: Public key distribution and coin tossing, Theoretical Computer Science, 560 (2014) 7-11.
[4] F. Arute, K. Arya, et al., Quantum supremacy using a programmable superconducting processor, Nature, 574 (2019) 505-510.
[5] Zhong H S, Wang H, et al., Quantum computational advantage using photons, Science, DOI 10.1126/science.abe8770(2020).
[6] Gong M, Wang S, et al., Quantum walks on a programmable two-dimensional 62-qubit superconducting processor, Science, DOI 10.1126/science.abg7812(2021).
[7] Zhu Q, Cao S, et al., Quantum Computational Advantage via 60-Qubit 24-Cycle Random Circuit Sampling, DOI (2021).
[8] Y. Wu, W. S. Bao, et al., Strong Quantum Computational Advantage Using a Superconducting Quantum Processor, Phys Rev Lett, 127 (2021) 180501.
[9] H. S. Zhong, Y. H. Deng, et al., Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light, Phys Rev Lett, 127 (2021) 180502.
[10] A. J. Freeman, R. E. Watson, Theoretical Investigation of Some Magnetic and Spectroscopic Properties of Rare-Earth Ions, Physical Review, 127 (1962) 2058-2075.
[11] B. R. Judd, Optical Absorption Intensities of Rare-Earth Ions, Physical Review, 127 (1962) 750-761.
[12] G. S. Ofelt, Intensities of Crystal Spectra of Rare‐Earth Ions, The Journal of Chemical Physics, 37 (1962) 511-520.
[13] Flurin Könz, Y. Sun, et al., Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption inEu3+:Y2SiO5, Physical Review B, 68 (2003).
[14] De Oliveira Lima Karmel, Nanocristaux dopés par des ions terres rares pour des applications en information quantique, 2015.
[15] Guokui Liu, Bernard Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials, Springer Science & Business Media2006.
[16] Manjin Zhong, Development of Persistent Quantum Memories, 2017.
[17] G. P. Flinn, K. W. Jang, et al., Sample-dependent optical dephasing in bulk crystalline samples of Y2O3:Eu3+, Phys Rev B Condens Matter, 49 (1994) 5821-5827.
[18] J. G. Bartholomew, K. de Oliveira Lima, et al., Optical Line Width Broadening Mechanisms at the 10 kHz Level in Eu(3+):Y2O3 Nanoparticles, Nano Lett, 17 (2017) 778-787.
[19] D. Serrano, C. Deshmukh, et al., Coherent optical and spin spectroscopy of nanoscale Pr3+:Y2O3, Physical Review B, 100 (2019).
[20] S. Liu, A. Fossati, et al., Defect Engineering for Quantum Grade Rare-Earth Nanocrystals, ACS Nano, 14 (2020) 9953-9962.
[21] M. Zhong, M. P. Hedges, et al., Optically addressable nuclear spins in a solid with a six-hour coherence time, Nature, 517 (2015) 177-180.
[22] Y. Ma, Y. Z. Ma, et al., One-hour coherent optical storage in an atomic frequency comb memory, Nat Commun, 12 (2021) 2381.
[23] Y. Z. Ma, M. Jin, et al., Elimination of noise in optically rephased photon echoes, Nat Commun, 12 (2021) 4378.
[24] S. Cook, T. Rosenband, et al., Laser-Frequency Stabilization Based on Steady-State Spectral-Hole Burning in Eu3+:Y2SiO5, Phys Rev Lett, 114 (2015) 253902.
[25] O. Gobron, K. Jung, et al., Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals, Opt Express, 25 (2017) 15539-15548.
[26] N Galland, N Lucic, et al., Double-heterodyne probing for ultra-stable laser based on spectral hole burning in a rare-earth doped crystal, Optics Letters, DOI 10.1364/OL.389833(2020).
[27] Marion Scarafagio, Alexandre Tallaire, et al., Ultrathin Eu- and Er-Doped Y2O3 Films with Optimized Optical Properties for Quantum Technologies, The Journal of Physical Chemistry C, 123 (2019) 13354-13364.
[28] Alban Ferrier, Nao Harada, et al., Harnessing Atomic Layer Deposition and Diffusion to Spatially Localize Rare-Earth Ion Emitters, The Journal of Physical Chemistry C, 124 (2020) 19725-19735.
[29] R. M. Macfarlane, Y. Sun, et al., Optical decoherence times and spectral diffusion in an Er-doped optical fiber measured by two-pulse echoes, stimulated photon echoes, and spectral hole burning, Journal of Luminescence, 127 (2007) 61-64.
[30] Rikuto Fukumori, Yizhong Huang, et al., Subkilohertz optical homogeneous linewidth and dephasing mechanisms in Er3+:Y2O3 ceramics, Physical Review B, 101 (2020).
[31] J. X. Zheng, G. Ceder, et al., Native point defects in yttria and relevance to its use as a high-dielectric-constant gate oxide material: First-principles study, Physical Review B, 73 (2006).
[32] Stephen R. Podowitz, Romain Gaumé, et al., Effect of Europium Concentration on Densification of Transparent Eu:Y2O3 Scintillator Ceramics Using Hot Pressing, Journal of the American Ceramic Society, 93 (2010) 82-88.
[33] C. O'Brien, N. Lauk, et al., Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal, Phys Rev Lett, 113 (2014) 063603.
[34] Karmel de Oliveira Lima, Rogéria Rocha Gonçalves, et al., Influence of defects on sub-Å optical linewidths in Eu3+: Y2O3 particles, Journal of Luminescence, 168 (2015) 276-282.
[35] Shuping Liu, Diana Serrano, et al., Controlled size reduction of rare earth doped nanoparticles for optical quantum technologies, RSC Advances, 8 (2018) 37098-37104.
[36] A. Fossati, S. Liu, et al., A Frequency-Multiplexed Coherent Electro-optic Memory in Rare Earth Doped Nanoparticles, Nano Lett, 20 (2020) 7087-7093.
[37] A. Grill, M. Schieber, Magnetic Susceptibilities of Cubic Mixed Europium Oxides, Physical Review B, 1 (1970) 2241-2242.
[38] M. Mitric, P. Onnerud, et al., The preferential site occupation and magnetic properties of GdxY2xO3, Journal of Physics and Chemistry of Solids, DOI 10.1016/0022-3697(93)90226-H(1993).
[39] T. R. Stoner, J. B. Gruber, Closure Procedure for Two‐Photon Absorption Intensities, The Journal of Chemical Physics, 52 (1970) 1508-1509.
[40] R.M. Macfarlane, R.M. Shelby, Sub-kilohertz optical linewidths of the 7F00→5D0 transition in Y2O3:Eu3+, Optics Communications, DOI 10.1016/0030-4018(81)90048-1(1981).
[41] M. J Sellars, R. S Meltzer, et al., Time-resolved ultranarrow optical hole burning of a crystalline solid: Y2O3:Eu3+, Journal of the Optical Society of America B, DOI 10.1364/JOSAB.11.001468(1994).
[42] A. Perrot, P. Goldner, et al., Narrow optical homogeneous linewidths in rare earth doped nanocrystals, Phys Rev Lett, 111 (2013) 203601.
[43] D. Serrano, J. Karlsson, et al., All-optical control of long-lived nuclear spins in rare-earth doped nanoparticles, Nat Commun, 9 (2018) 2127.
[44] A. Arcangeli, A. Ferrier, et al., Stark echo modulation for quantum memories, Physical Review A, 93 (2016).
[45] Julia Benedikter, Thea Moosmayer, et al., Transverse-mode coupling effects in scanning cavity microscopy, New Journal of Physics, 21 (2019).
[46] Hrishikesh Kelkar, Daqing Wang, et al., Sensing Nanoparticles with a Cantilever-Based Scannable Optical Cavity of Low Finesse and Sub-λ3 Volume, Physical Review Applied, 4 (2015).
[47] T. Zhong, J. M. Kindem, et al., Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals, Nat Commun, 6 (2015) 8206.
[48] T. Zhong, J. M. Kindem, et al., Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles, Nat Commun, 8 (2017) 14107.
[49] R. S. Meltzer, W. M. Yen, et al., Evidence for long-range interactions between rare-earth impurity ions in nanocrystals embedded in amorphous matrices with the two-level systems of the matrix, Physical Review B, 64 (2001).
[50] Hong K S, Yang H S, Electron-phonon interactions in insulating nanoparticles Eu2:O3, Journal- Korean Physical Society, 61 (2005).
[51] T. Utikal, E. Eichhammer, et al., Spectroscopic detection and state preparation of a single praseodymium ion in a crystal, Nat Commun, 5 (2014) 3627.
[52] Thomas Lutz, Lucile Veissier, et al., Effects of mechanical processing and annealing on optical coherence properties of Er3+:LiNbO3 powders, Journal of Luminescence, 191 (2017) 2-12.
[53] T. Lutz, L. Veissier, et al., Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped Y3AI5O12 powders studied using spectral hole burning, Sci Technol Adv Mater, 17 (2016) 63-70.
[54] Yang J ., Quan Z ., et al., Y2O3 :Eu3+ Microspheres: Solvothermal Synthesis and Luminescence Properties, Crystal Growth & Design, 7 (2007).
[55] BlueFors, Manual_LD-series_v1.5.0, BlueFors Cryogenics Ltd, 2016.
[56] J. Mlynek, N. C. Wong, et al., Raman Heterodyne Detection of Nuclear Magnetic Resonance, Physical Review Letters, 50 (1983) 993-996.
[57] C. H. Chang, R. K. Heilmann, et al., Design of a double-pass shear mode acousto-optic modulator, Rev Sci Instrum, 79 (2008) 033104.
[58] E. A. Donley, T. P. Heavner, et al., Double-pass acousto-optic modulator system, Review of Scientific Instruments, 76 (2005).

所在学位评定分委会
物理系
国内图书分类号
O482.31
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/336027
专题量子科学与工程研究院
推荐引用方式
GB/T 7714
胡肇高. 稀土纳米系统的相干特性及其在量子技术中的应用研究[D]. 广东省深圳市. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930025-胡肇高-量子科学与工程(4148KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[胡肇高]的文章
百度学术
百度学术中相似的文章
[胡肇高]的文章
必应学术
必应学术中相似的文章
[胡肇高]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。