[1] LI C C, ZHOU H G, YANG S C, et al. pre-adsorption of O2 on the exposed (001) facets ofzno nanostructures for enhanced sensing of gaseous acetone[J]. ACS Applied Nano Materials,2019, 2(10):6144-6151.
[2] YUMS,WANGGC,ZHAORR,etal. ImprovedinterfacialwetabilityinCu/ZnOanditsroleinZnO/Cu/ZnO sandwiched transparent electrodes[J]. Journal of Materials Science Technology,2020, 37:123-127.
[3] LI B J , WEI S, LIAO C H, et al. High-mobility ZnVxOy/ZnO conduction path in ZnO/V/ZnOmultilayer structure[J]. Journal of Applied Physics, 2020, 130:075302.
[4] NIE M, SUN H, CAI H L, et al. Study on electrocatalytic property of ZnO and Ag/ZnO[J].Materials Letters, 2020, 271:127785.
[5] RABELL H O, ALFAROCRUZ M R, RAMIREZ J, I. Hydrogen production of ZnO andZnO/Ag films by photocatalysis and photoelectrocatalysis[J]. Materials Science in Semicon-ductor Processing, 2021, 134:105985.
[6] BARADARAN M, GHODSI F E, BITTENCOURT C, et al. The role of Al concentration onimproving the photocatalytic performance of nanostructured ZnO/ZnO:Al/ZnO multilayer thinfilms[J]. Journal of Alloys and Compounds, 2019, 788:289-301.
[7] OU R Z, ZENG Z X, NING X T, et al. Improved photocatalytic performance of N-doped ZnO/graphene/ZnO sandwich composites[J]. Applied Surface Science, 2021, 577:151856.
[8] GOKTAS A, MODANLI S, TUMBUL A, et al. Facile synthesis and characterization of ZnO,ZnO:Co, and ZnO/ZnO:Co nano rod-like homojunction thin films: Role of crystallite/grain sizeandmicrostraininphotocatalyticperformance[J]. JournalofAlloysandCompounds,2021,893:162334.
[9] NAZ F, SAEED K. Investigation of photocatalytic behavior of undoped ZnO and Cr-dopedZnO nanoparticles for the degradation of dye[J]. Inorganic and Nano-Metal Chemistry, 2020,51(25):1-11.
[10] TSAI Y S, CHEN J R, LEE C H, et al. Morphologies and material properties of ZnO nanotubes,ZnO/ZnS core-shell nanorods, and ZnO/ZnS core-shell nanotubes[J]. Ceramics International,2021, 48(5):7232-7239.
[11] SUDHEER V R, SARATHKUMAR S R, SANKARARAMAN S. Nanostructured ZnO andZnO: Pd with MXene overlayer SPR biosensors[J]. Optical and Quantum Electronics, 2021, 53(6):340.
[12] QUE M L, LIN C, SUN J W, et al. Progress in ZnO nanosensors[J]. Sensors, 2021, 21(16):5502.
[13] SON D, MOON B, LEE A, et al. Polarity effects of ZnO on charge recombination at CsPbBr3nanoparticles/ZnO interfaces[J]. Applied Surface Science, 2019, 483:165-169.
[14] SIKAM P, THIRAYATORN R, MOONTRAGOON P, et al. The quantum confined stark effectin N-doped ZnO/ZnO/N-doped ZnO nanostructures for infrared and terahertz applications[J].Nanotechnology, 2020, 31(44):445207.
[15] YANGL, DINGR,ZHUW, et al. ZnOdefectsinvolved in energytransferfor ZnO:Tb nanopar-ticles[J]. Journal of Physics and Chemistry of Solids, 2021, 157:110158.
[16] SARMA B, SARMA B K. Role of residual stress and texture of ZnO nanocrystals on electro-optical properties of ZnO/Ag/ZnO multilayer transparent conductors[J]. Journal of Alloys andCompounds, 2018, 734:210-219.
[17] CHEN Z, YAN Q, ZHAO Y, et al. The structure and the optical-electrical properties of theZnO films and the Al:ZnO/N: ZnO homojunction photodiode[J]. Journal of Sol-Gel Scienceand Technology, 2019, 91:101-110.
[18] GOZEH B A, KARABULUT A, AMEEN M M, et al. Synthesis and characterization of La-doped ZnO (La:ZnO) films for photodetectors[J]. Surface Review and Letters (SRL), 2020, 27(07):1950173.
[19] LI L, YAO C, WU L, et al. ZnS covering of ZnO nanorods for enhancing UV emission fromZnO[J]. The Journal of Physical Chemistry C, 2021, 125:13732-13740.
[20] KIM H W, BAEK S H, LEE S N. Surface plasmon‐enhanced high‐performance ZnO/Ni/ZnOultravioletphotodetectors[J]. PhysicalStatusSolidi-RapidResearchLetters,2021, 14:1900685.
[21] LUPAN O, GUERIN V M, TIGINYANU I M, et al. Well-aligned arrays of vertically orientedZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitizedsolar cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 211(1):65-73.
[22] SUN X W, WANG L D, KWOK H S. Improved ITO thin films with a thin ZnO buffer layer bysputtering[J]. Thin Solid Films, 2000, 360(1):75-81.
[23] CHANG J, KUO H H, LEU I C, et al. The effects of thickness and operation temperature onZnO:Al thin film CO gas sensor[J]. Sensors and Actuators B: Chemical, 2002, 84(2):258-264.
[24] MITRA P, CHATTERJEE A P, MAITI H S. ZnO thin film sensor[J]. Materials Letters, 1998,35(1):33-38.
[25] LOOK D C. Recent advances in ZnO materials and devices[J]. Materials Science and Engi-neering: B, 2001, 80(1):383-387.
[26] SHAIKH S K, INAMDAR S I, GANBAVLE V V, et al. Chemical bath deposited ZnO thin filmbased UV photoconductive detector[J]. Journal of Alloys Compounds, 2015, 664:242-249.
[27] BORUAHBD,MUKHERJEEA,MISRAA. SandwichedassemblyofZnOnanowiresbetweengraphene layers for a self-powered and fast responsive ultraviolet photodetector[J]. Nanotech-nology, 2016, 27(9):095205.
[28] WU B, WEI S Z, CHI C, et al. The growth of ZnO on stainless steel foils by MOCVD andits application in light emitting devices[J]. Physical Chemistry Chemical Physics, 2016, 18(7):5614-5621.
[29] SOCI C, ZHANG A, XIANG B, et al. ZnO nanowire UV photodetectors with high internalgain.[J]. Nano Letters, 2007, 74(4):1003-1009.
[30] HUANG M H, MAO S, FEICK H, et al. Room-temperature ultraviolet nanowire nanolasers[J].Science, 2001, 292(5523):1897-1899.
[31] WANG W Z, ZENG B Q, YANG J, et al. Aligned ultralong ZnO nanobelts and their enhancedfield emission[J]. Advanced Materials, 2006, 18(24):3275-3278.
[32] YANG Q, GUO X, WANG W, et al. Enhancing sensitivity of a single ZnO Micro-/Nanowirephotodetector by piezo-phototronic effect[J]. ACS Nano, 2010, 4(10):6285-6291.
[33] WAHL R, LAURITSEN J V, BESENBACHER F, et al. Stabilization mechanism for the polarZnO (000-1)-O surface[J]. Physical review. B, 2013, 87(8):085313.
[34] REEBER R R. Lattice parameters of ZnO from 4.2 to 296 K[J]. Journal of Applied Physics,1970, 41(13):5063-5066.
[35] DULUB O, DIEBOLD U, KRESSE G. Novel stabilization mechanism on polar surfaces:ZnO(0001)-Zn[J]. Physical Review Letters, 2003, 90(1):016102.
[36] LAURITSEN J V, PORSGAARD S, KRESSE G. Stabilization principles for polar surfaces ofZnO[J]. ACS Nano, 2011, 5(7):5987-5994.
[37] OEZGUER U, ALIVOV Y I, LIU C, et al. A comprehensive review of ZnO materials anddevices[J]. Journal of Applied Physics, 2005, 98(4):041301.
[38] PEARTON S. Recent progress in processing and properties of ZnO[J]. Progress in MaterialsScience, 2005, 50(3):293-340.
[39] NOGUERA C. Polar oxide surfaces[J]. Journal of Physics: Condensed Matter, 2000, 12(31):R367.
[40] LI Y Y, YU H, YANG Y, et al. Fabrication of 3D ordered mesoporous ball-flower structuresZnO material with the excellent gas sensitive property[J]. Sensors and Actuators B: Chemical,2019, 300:127050.
[41] TASKER P W. The stability of ionic crystal surfaces[J]. Journal of Physics C:Solid StatePhysics, 1979, 12:4977-4984.
[42] NOSKER R W, MARK P, LEVINE J D. Polar surfaces of wurtzite and zincblende lattices[J].Surface Science, 1970, 19:291-317.
[43] STAEMMLER V, FINK K, MEYER B, et al. Stabilization of polar ZnO surfaces: Validatingmicroscopic models by using CO as a probe molecule[J]. Physical Review Letters, 2003, 90(10):106102.
[44] PASHLEY M D. Electron counting model and its application to island structures on molecular-beam epitaxy grown GaAs(001) and ZnSe(001)[J]. Physical Review B, 1989, 40(15):10481-10487.
[45] DU M H, ZHANG S B, NORTHRUP J E, et al. Stabilization mechanisms of polar surfaces:ZnO surfaces[J]. Physical Review B, 2008, 78:155424.
[46] XU H, DONG L, SHI X Q, et al. Stabilizing forces acting on ZnO polar surfaces: STM, LEED,and DFT[J]. Physical Review B, 2014, 89(23):235403.
[47] ZHENGH,GRUYTERSM,PEHLKEE,etal. ”magic”vicinalzincoxidesurfaces[J]. PhysicalReview Letters, 2013, 111(8):086101.
[48] MEYER B, MARX D. Density-functional study of the structure and stability of ZnO surfaces[J]. Physical Review B, 2003, 67(3):035403.
[49] TORBRUGGE S, OSTENDORF F, REICHLING M. Stabilization of zinc-terminatedZnO(0001) by a modified surface stoichiometry[J]. The Journal of Physical Chemistry C, 2009,113(12):4909–4914.
[50] KRESSE G, DULUB O, DIEBOLD U. Competing stabilization mechanism for the polarZnO(0001)-Zn surface[J]. Physical Review B, 2003, 68(24):245409.
[51] XU H, DONG L, SHI X, et al. Observation and analysis of ordered and disordered structureson the ZnO(0001) polar surface[J]. Journal of Physical Chemistry C, 2016, 120:26915-26921.
[52] LIU Y, XU W, SHAN Y, et al. High reactivity of the ZnO(0001) polar surface: The role ofoxygen adatoms[J]. J. Phys. Chem. C, 2017, 121(29):15711-15718.
[53] VALTINER M, TODOROVA M, GRUNDMEIER G, et al. Temperature stabilized surfacereconstructions at polar ZnO(0001)[J]. Physical Review Letters, 2009, 103(6):065502.
[54] YOO S H, TODOROVA M, NEUGEBAUER J. Selective solvent-induced stabilization of po-lar oxide surfaces in an electrochemical environment[J]. Physical Review Letters, 2018, 120:066101.
[55] MEYER B. First-principles study of the polar O-terminated ZnO surface in thermodynamicequilibrium with oxygen and hydrogen[J]. Physical Review B, 2004, 69(4):045416.
[56] PRUZAN P, LIEBENBERG D H, MILLS R L. Approach to melting in ammonia as a criticaltransition[J]. Physical Review Letters, 1982, 48:1200-1203.
[57] BORNM,OPPENHEIMERR. Zurquantentheoriedermolekeln[J]. AnnalenDerPhysik,1985,389(20):457-484.
[58] KOHN W, SHAM L J. Quantum density oscillations in an inhomogeneous electron gas[J].Physical Review, 1965, 137(6A):1697.
[59] FOCK V. Naherungsmethode zur losung des quantenmechanischen mehrkorperproblems[J].Zeitschrift Fur Physik, 1930, 61(1-2):126-148.
[60] KOHN W, SHAM L J. Self-consistentequations including exchange and correlation effects,DFT[J]. Physical Review, 1965, 140(4A):1133.
[61] CEPERLEY D M, ALDER B J. Ground state of the electron gas by a stochastic method[J].Physical Review Letters, 1980, 45:566–569.
[62] BURKE K, PERDEW J P, YUE W. Derivation of a generalized gradient approximation: ThePW91 density functional[J]. Springer US, 1998.
[63] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868.
[64] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11):7892-7895.
[65] SUN G, KüRTI J, RAJCZY P, et al. Performance of the vienna ab initio simulation package(VASP) in chemical applications[J]. Journal of Molecular Structure Theochem, 2015, 624(1-3):37-45.
[66] HENKELMAN G, UBERUAGA B P, JONSSON H. A climbing image nudged elastic bandmethod for finding saddle points and minimum energy paths[J]. The Journal of ChemicalPhysics, 2000, 113(22):9901-9904.
[67] CHANG S C, MARK P. The crystallography of the polar (0001) Zn and (0001)O surfaces ofzinc oxide[J]. Surface Science, 1974, 46:293-300.
[68] BECKER T, HöVEL S, KUNAT M, et al. Interaction of hydrogen with metal oxides: the caseof the polar ZnO(0001) surface[J]. Surface Science, 2001, 486(3):L502-L506.
[69] VALTINER M, BORODIN S, GRUNDMEIER G. Stabilization and acidic dissolution mecha-nism of single-crystalline ZnO(0001) surfaces in electrolytes studied by in-situ AFM imagingand ex-situ LEED[J]. Langmuir, 2008, 24(10):5350-5358.
修改评论